• 제목/요약/키워드: Human engineering

검색결과 11,219건 처리시간 0.034초

신고리 1, 2호기 원자력발전소 주제어실 환경설계 (A Human-Environment Design for Main Control Rooms in SHIN-KORI 1.2 Nuclear Power Plants)

  • 변승남;김사길;류제혁
    • 산업공학
    • /
    • 제17권spc호
    • /
    • pp.37-45
    • /
    • 2004
  • Human factors engineering design guidelines for main control rooms(MCR) in nuclear power plants(NPP) have been applied to optimize human-machine interface(HMI) between operators and their equipment on the basis of physical, physiological and cognitive aspects. However, the HMI design for MCR is not found to be sufficient to maximize operators' performance since the operators in the MCR experience excessive stress due to the environmental factors such as inappropriate interiors and illumination. Therefore, well-designed environment of the MCR may be equally important to improve human performance in the MCR. The objectives of the study are two-fold: (1) to propose an interior design of SHIN-KORI 1 2 for pleasant and comfortable working environments, and (2) to design indirect lighting system to enhance visibility and productivity. The human factors engineering checklists were developed to examine whether or not the proposed human-environment design for SHIN-KORI 1 2 satisfies the regulations and guidelines presented by NUREG-0700 Revision 1. The implications of the human-environment design are discussed in detail.

Real-Time Tracking of Human Location and Motion using Cameras in a Ubiquitous Smart Home

  • Shin, Dong-Kyoo;Shin, Dong-Il;Nguyen, Quoc Cuong;Park, Se-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권1호
    • /
    • pp.84-95
    • /
    • 2009
  • The ubiquitous smart home is the home of the future, which exploits context information from both the human and the home environment, providing an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. In this paper, we present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. The system uses four network cameras for real-time human tracking. This paper explains the architecture of the real-time human tracker, and proposes an algorithm for predicting human location and motion. To detect human location, three kinds of images are used: $IMAGE_1$ - empty room image, $IMAGE_2$ - image of furniture and home appliances, $IMAGE_3$ - image of $IMAGE_2$ and the human. The real-time human tracker decides which specific furniture or home appliance the human is associated with, via analysis of three images, and predicts human motion using a support vector machine (SVM). The performance experiment of the human's location, which uses three images, lasted an average of 0.037 seconds. The SVM feature of human motion recognition is decided from the pixel number by the array line of the moving object. We evaluated each motion 1,000 times. The average accuracy of all types of motion was 86.5%.

Robust 2D human upper-body pose estimation with fully convolutional network

  • Lee, Seunghee;Koo, Jungmo;Kim, Jinki;Myung, Hyun
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.129-140
    • /
    • 2018
  • With the increasing demand for the development of human pose estimation, such as human-computer interaction and human activity recognition, there have been numerous approaches to detect the 2D poses of people in images more efficiently. Despite many years of human pose estimation research, the estimation of human poses with images remains difficult to produce satisfactory results. In this study, we propose a robust 2D human body pose estimation method using an RGB camera sensor. Our pose estimation method is efficient and cost-effective since the use of RGB camera sensor is economically beneficial compared to more commonly used high-priced sensors. For the estimation of upper-body joint positions, semantic segmentation with a fully convolutional network was exploited. From acquired RGB images, joint heatmaps accurately estimate the coordinates of the location of each joint. The network architecture was designed to learn and detect the locations of joints via the sequential prediction processing method. Our proposed method was tested and validated for efficient estimation of the human upper-body pose. The obtained results reveal the potential of a simple RGB camera sensor for human pose estimation applications.

Development of a Rule-Based Inference Model for Human Sensibility Engineering System

  • Yang Sun-Mo;Ahn Beumjun;Seo Kwang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.743-755
    • /
    • 2005
  • Human Sensibility Engineering System (HSES) has been applied to product development for customer's satisfaction based on ergonomic technology. The system is composed of three parts such as human sensibility analysis, inference mechanism, and presentation technologies. Inference mechanism translating human sensibility into design elements plays an important role in the HSES. In this paper, we propose a rule-based inference model for HSES. The rule-based inference model is composed of five rules and two inference approaches. Each of these rules reasons the design elements for selected human sensibility words with the decision variables from regression analysis in terms of forward inference. These results are evaluated by means of backward inference. By comparing the evaluation results, the inference model decides on product design elements which are closer to the customer's feeling and emotion. Finally, simulation results are tested statistically in order to ascertain the validity of the model.

단일 Lot 생산시스템에서의 Human Factor가 품질에 미치는 영향 분석 (The Effect Analysis of Quality Considering Human Factor in a Single Lot Production System)

  • 윤상원;윤석환;신용백
    • 산업경영시스템학회지
    • /
    • 제17권31호
    • /
    • pp.33-42
    • /
    • 1994
  • This paper aims to analyse and appraise the effect of human performance to the variation of quality through constructing the dynamic recursive control model considering the human factor in a single production system. The model studied in this paper has a great advance from the point of combinating three technologies(quality control, automatic control theory, human engineering) and can also be expanded in several applications.

  • PDF

Identifying Strategies to Address Human Cybersecurity Behavior: A Review Study

  • Hakami, Mazen;Alshaikh, Moneer
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.299-309
    • /
    • 2022
  • Human factor represents a very challenging issue to organizations. Human factor is responsible for many cybersecurity incidents by noncompliance with the organization security policies. In this paper we conduct a comprehensive review of the literature to identify strategies to address human factor. Security awareness, training and education program is the main strategy to address human factor. Scholars have consistently argued that importance of security awareness to prevent incidents from human behavior.

적분슬라이딩모드와 DOB를 이용한 강인추종 및 인간순응 로봇제어 (Robust Tracking and Human-Compliance Control Using Integral SMC and DOB)

  • 아브너 어시그네시온;김민찬;곽군평;박승규
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.416-422
    • /
    • 2017
  • 인간과 로봇이 같은 공간에서 작업을 할 경우가 많아짐에 따라 안전성을 고려한 로봇의 제어가 필요하다. 안정성을 위해서 로봇은 인간의 힘에 순응해야 함으로 낮은 임피던스가 요구되는 반면에 높은 제어성능을 갖도록 하기 위해서는 외란에 강인하기 위해서는 높은 임피던스가 요구된다. 이러한 이율배반적인 목적을 달성하기 위해서 본 연구에서는 적분슬라이딩모드와 외란관측기(DOB)를 사용하여 인간의 힘 이외의 외란에는 강인한 특성을 보이고 인간의 힘에는 순응할 수 있는 제어기를 설계한다. 인간의 동작이 특정 주파수의 범위에 있다는 사실에 근거하여 인간에 의한 외란인 경우의 외란에 대해서는 로봇이 순응하도록 슬라이딩모드를 설계하는 것이 본 논문의 독창적인 아이디어이다.

2.45 GHz On-Body 시스템에서 인체 내부 장기에 따른 채널 모델 특징 연구 (Study of Channel Model Characterization of Human Internal Organ in On-Body System at 2.45 GHz)

  • 전재성;최재훈;김선우
    • 한국전자파학회논문지
    • /
    • 제25권1호
    • /
    • pp.62-69
    • /
    • 2014
  • 본 논문에서는 WBAN(Wireless Body Area Network) On-body 시스템에서 표면 지향 안테나를 사용하여 인체 내부 기관에 의한 영향을 분석하였다. 인체 내부 기관의 영향을 확인하기 위하여 인체 상반신 모델과 실제 인체에 안테나를 부착하여 수신 신호의 세기를 측정하였다. 실험은 인체에 대한 고유 영향을 보기 위하여 무반향실에서 움직임 없이 수행하였고, VNA(Vector Network Analyzer)를 이용하여 수신 신호 세기를 측정하였다. 측정된 데이터를 이용하여 인체 모델과 상반신 모델의 수신 신호 세기를 비교하였고, 인체 내부 기관이 안테나 수신 신호 세기에 미치는 효과를 분석하였다.

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF