DOI QR코드

DOI QR Code

Study of Channel Model Characterization of Human Internal Organ in On-Body System at 2.45 GHz

2.45 GHz On-Body 시스템에서 인체 내부 장기에 따른 채널 모델 특징 연구

  • Jeon, Jaesung (Department of Electronic Computer Engineering, Hanyang University) ;
  • Choi, Jaehoon (Department of Electronic Computer Engineering, Hanyang University) ;
  • Kim, Sunwoo (Department of Electronic Computer Engineering, Hanyang University)
  • 전재성 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과) ;
  • 김선우 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2013.08.23
  • Accepted : 2013.11.18
  • Published : 2014.01.31

Abstract

In this paper, WBAN(Wireless Body Area Network) On-body system using the surface-oriented antenna about the impact of human internal organs were analyzed through experiments. The received signal strength is measured for effect of human using the human model and the phantom of torso. Experiments are performed in anechoic chamber without moving and measured by Vector Network Analyzer. This paper confirms the effect of human body by comparing the human model and the phantom of torso. And also know the human internal organs effect on the antennas loss of received signal strength by measured data.

본 논문에서는 WBAN(Wireless Body Area Network) On-body 시스템에서 표면 지향 안테나를 사용하여 인체 내부 기관에 의한 영향을 분석하였다. 인체 내부 기관의 영향을 확인하기 위하여 인체 상반신 모델과 실제 인체에 안테나를 부착하여 수신 신호의 세기를 측정하였다. 실험은 인체에 대한 고유 영향을 보기 위하여 무반향실에서 움직임 없이 수행하였고, VNA(Vector Network Analyzer)를 이용하여 수신 신호 세기를 측정하였다. 측정된 데이터를 이용하여 인체 모델과 상반신 모델의 수신 신호 세기를 비교하였고, 인체 내부 기관이 안테나 수신 신호 세기에 미치는 효과를 분석하였다.

Keywords

References

  1. 전재성, 안병직, 김선우, 최재훈, "WBAN Off-Body 채널에서 안테나 편파의 영향 분석", 한국전자파학회논문지, 24(2), pp. 144-151, 2013년 2월. https://doi.org/10.5515/KJKIEES.2013.24.2.144
  2. 안병직, 송성무, 김선우, 최재훈, "WBAN 채널 특성과 전송 효율 분석", 한국전자파학회논문지, 23(8), pp. 985-994, 2012년 8월. https://doi.org/10.5515/KJKIEES.2012.23.8.985
  3. M. O. Munoz, R. Foster, and Y. Hao, "On-body channel measurement using wireless sensors", IEEE Trans. on Antennas and Propagation, vol. 60, no. 7, Jul. 2013.
  4. A. Michalopoulou, A. Alexandridis, K. Peppas, T. Zervos, F. Lazarakis, K. Dangakis, and D. I. Kaklamani, "Statistical analysis for on-body spatial diversity communications at 2.45 GHz", IEEE Trans. on Antennas and Propagation, vol. 60, no. 8, Aug. 2012.
  5. Z. H. Hu, Y. I. Nechayev, P. S. Hall, C. C. Constantinou, and Y. Hao, "Measurement and statistical analysis of on-body channel fading at 2.45 GHz", IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 612-615, 2007. https://doi.org/10.1109/LAWP.2007.904633
  6. K. Li, K. Honda, and K. Ogawa, "Shadowing fading BER characterization of BAN antennas based on realistic walking models", in Proc. 7th Intl. Symp. on Med. Info. and Comm. Tech.(ISMICT), 2013.
  7. K. Minseok, J. Takada, "Experimental investigation and modeling of shadow fading by human movement on body surface propagation channel", IEEE AP-S Intl. Symp., Jun. 2009.
  8. X. Huang, H. Shan, and X. Shen, "On energy efficiency of cooperative communications in wireless body area networks", in Proc. IEEE WCNC. 2011.
  9. S. Hara, D. Anzai, K. Yanagihara, K. Takizawa, and K. Hamaguchi, "A cooperative transmission scheme for realtime data gathering in a wireless body area network", IEEE 22nd Intl. Symp. on Personal, Indoor and Mobile Radio Communications, 2011.
  10. K. Wangchuk, M. Kim, and J. Takada, "Cooperator selection in 2.4 GHz on-body wireless body area network", in Proc. 7th Intl. Symp. on Med. Info. and Comm. Tech.(ISMICT), 2013.
  11. J. Tak, J. Choi, "Circular-ring patch antenna with higher order mode for on-body communications", Microwave and Optical Technology Letters(MOTL), unpublished.
  12. [Online], Available: http://www.speag.com/products/ emphantom/ whole-body/posable-phantom-popeye/
  13. Q. Yu, O. P. Gandhi, M. Aronsson, and D. Wu, "An automated SAR measurement system for compliance testing of personal wireless devices", IEEE Trans. on Electromagnetic Compatibility, vol. 41, no. 3, pp. 234-245, Aug. 1999. https://doi.org/10.1109/15.784158
  14. P. Gajsek, W. D. Hurt, J. M. Ziriax, and P. A. Mason, "Parametrci dependence of SAR on permittivity values in a man model", IEEE Trans. on Biomedical Engineering, vol. 48, no. 10, pp. 1169-1177, Oct. 2001. https://doi.org/10.1109/10.951520
  15. X. Liu, H. J. Chen, Y. Alfadhl, X. Chen, C. Parini, and D. Wen, "Conductivity and frequency dependent specific absorption rate", Journal of Applied Physics, vol. 113, pp. 074902-074910, Feb. 2013. https://doi.org/10.1063/1.4791928
  16. G. Kang, O. P. Gandhi, "Effect of dielectric properties on the peak 1- and 10-g SAR for 802.11 a/b/g frequencies 2.45 and 5.15 to 5.85 GHz", IEEE Trans. on Electromagnetic Compatibility, vol. 46, no. 2, pp. 268-274, May 2004. https://doi.org/10.1109/TEMC.2004.826875
  17. W. D. Hurt, J. M. Ziriax, and P. A. Mason, "Variability in EMF permittivity values: Implications for SAR calculations", IEEE Trans. on Biomedical Engineering, vol. 47, no. 3, pp. 396-401, Mar. 2000. https://doi.org/10.1109/10.827308
  18. IFAC, [Online], Available: http://niremif.ifac.cnr.it