• Title/Summary/Keyword: Human engineering

Search Result 11,284, Processing Time 0.04 seconds

Decusinol angelate inhibits UVB-induced MMP-l induction via Mitogen-activated Protein Kinase Pathway in human skin fibroblasts

  • Wang, Hye-Sung;Kang, Sun-Myung;Cho, Hong-Yon;Ho, Jin-Nyung;Kim, Ik-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.337.3-338
    • /
    • 2002
  • UV-B irradiation increases the synthesis of matrixmetalloproteinase-1 (MMP-1) that degrades skin collagen in human skin. In this work, we investigated the photoprotective effect of decursinol angelate (DEA) extracted Irom Angelica gigas on human skin libroblasts. DEA inhibited UVB-induced MMP-1 induction, which was conlirmed by western blot and ELISA. We examined upstream signal transduction pathway and the action mechanism of DEA on UVB induction of MMp in human skin fibroblasts. (omitted)

  • PDF

Detection of Human Vital Signs and Estimation of Direction of Arrival Using Multiple Doppler Radars

  • An, Yong-Jun;Jang, Byung-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • This paper presents a non-contact measurement method of vital signal by the use of multiple-input multiple-output (MIMO) bio-radar system, configured with two antennas that are separated by a certain distance. The direction of arrival (DOA) estimation algorithm for coherent sources was applied to detect vital signals coming from different spatial angles. The proposed MIMO bio-radar system was composed of two identical transceivers sharing single VCO with a PLL. In order to verify the performance of the system, the DOA estimation experiment was completed with respect to the human target at angles varying between $-50^{\circ}$ and $50^{\circ}$ where the bio-radar system was placed at distances (corresponding to 50 cm and 95 cm) in front of a human target. The proposed MIMO bio-radar system can successfully find the direction of a human target.

Numerical Analysis on the Flow Characteristics Considering the Inspiratory Flow Rate in a Human Airway (수치해석 기법을 이용한 호흡 유량에 따른 사람의 기도 내 유동 특성 연구)

  • Sung, Kun Hyuk;Ryou, Hong Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.177-183
    • /
    • 2012
  • The inspiratory flow rate of a human is changed with the amount of the workload. The flow characteristic is affected by the inspiratory flow rate. In the flow field of airway, the both of turbulence intensity and secondary flow affect the deposition pattern of particles which is important for the drug-aerosol targeting. Thus the analysis of the flow characteristic in a human airway is important. The purpose of this study is to investigate the effects of the inspiratory flow rate on the flow characteristics in a human airway. The tubular airway is consistent with the oral cavity, pharynx, larynx and trachea. The relatively inspiratory flow rate is used at each case of human states regarding the workload. By the effect of geometric airway changes, transition to turbulent airflow after the larynx can occur with relaminarization further downstream. The low Reynolds number k-${\omega}$ turbulence model is used for analysis with flow regime. As the inspiratory flow rate is larger, the turbulence kinetic energy and secondary flow intensity increase in airway. On the other hand, the area of recirculation zone is smaller.

Separation of dissolved gases from water using synthesized gases based on exhalation characteristics

  • Heo, Pil Woo;Park, In Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • It's possible for a human to breathe under water, if dissolved oxygen is effectively used. Fish can stay under water using the gill which extracts dissolved oxygen from water. Water includes small amounts of oxygen, so a human needs larger amounts of water to acquire oxygen enough for underwater breathing. The exhalation gas from a human is another method to get higher amounts of oxygen under water. It mainly composes of oxygen, nitrogen and carbon dioxide. So, if only carbon dioxide is decreased, the exhalation gas has good characteristics for breathing of a human under water. In this paper, composition of the exhalation gas from a human was analyzed using GC. Based on these results, the synthesized gas was prepared and mixed into water which was used for experimental devices to analyze separation characteristics of dissolved gases from water. Experimental devices included a water pump, a hollow fiber membrane module and a vacuum pump. The effects of pressure and water flow on separation characteristics of synthesized gas were investigated. The compositions of gases separated from water using synthesized gas were investigated using GC. These results expect to be applied to the development of underwater breathing technology for a human.

Development of Human Detection Technology with Heterogeneous Sensors for use at Disaster Sites (재난 현장에서 이종 센서를 활용한 인명 탐지 기술 개발)

  • Seo, Myoung Kook;Yoon, Bok Joong;Shin, Hee Young;Lee, Kyong Jun
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • Recently, a special purpose machine with two manipulators and quadruped crawler system has been developed for rapid life-saving and initial restoration work at disaster sites. This special purpose machine provides the driver with various environmental recognition functions for accurate and rapid task determination. In particular, the human detection technology assists the driver in poor working conditions such as low-light, dust, water vapor, fog, rain, etc. to prevent secondary human accidents when moving and working. In this study, a human detection module is developed to be mounted on a special purpose machine. A thermal sensor and CCD camera were used to detect victims and nearby workers in response to the difficult environmental conditions present at disaster sites. The performance of various AI-based life detection algorithm were verified and then applied to the task of detecting various objects with different postures and exposure conditions. In addition, image visibility improvement technology was applied to further improve the accuracy of human detection.

Development and Application of a Generation Method of Human Models for Ergonomic Product Design in Virtual Environment (가상환경상의 인간공학적 제품설계를 위한 인체모델군 생성기법 개발 및 적용)

  • Ryu, Tae-Beum;Jung, In-Jun;You, Hee-Cheon;Kim, Kwang-Jae
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.144-148
    • /
    • 2003
  • A group of digital human models with various sizes which properly represents a population under consideration is needed in the design process of an ergonomic product in virtual environment. The present study proposes a two-step method which produces a representative group of human models in terms of stature and weight. The proposed method first generates a designated number of pairs of stature and weight within an accommodation range from the bivariate normal distribution of stature and weight of the target population. Then, from each pair of stature and weight, the method determines the sizes of body segments by using 'hierarchical' regression models and corresponding prediction distributions of individual values. The suggested method was applied to the 1988 US Army anthropometric survey data and implemented to a web-based system which generates a representative group of human models for the following parameters: nationality, gender, accommodation percentage, and number of human models.

Design and Implementation of the Small Size Microwave Sensor Receiver for Human Body Detection (인체 감지용 소형 마이크로파 센서 수신기의 설계 및 제작)

  • Son, Hong-Min;Choi, Hyun-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.403-406
    • /
    • 2016
  • This paper presents the design and implementation of the small size receiver to put a passive microwave sensor for human body detection to practical use. The requirements and specifications of the sensor receiver are drawn using the experimental data of human body detection by the existing sensor operated at 5.1 GHz. The small size sensor receiver to satisfy the drawn specifications is designed and implemented. The effectiveness of the fabricated sensor with small size receiver on human body detection is demonstrated experimentally in laboratory. The results show the sensor can detect human body to within 4 m distance from the antenna. The size and power consumption of the small size receiver are decreased to 60 % and 40 % compared to those of the existing receiver, respectively.

The Study on Evaluation of Human Body Injury by Explosion of Portable Butane Gas Range (부탄연소기 폭발로 인한 인체 상해 평가에 관한 연구)

  • Kim, Eui Soo;Shim, J.H.;Kim, J.P.;Park, N.K.
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.60-67
    • /
    • 2016
  • The gas leak and explosion accident is able to give a fatal injury to nearby people from the explosion center and interest in effect of the explosion on the human body is increased. Accidents by Portable Butane Gas Range of a gas explosion accident occupy the most share. As a result, the injury on the human body frequently occur. However, It is situation that are experiencing difficulties in consequence analysis of explosion accidents owing to shortage of explosion power data and lack of research on the effect of the human body by the gas explosion. This paper acquire human injury data by performing the actual explosion experiment with Portable Butane Gas Range and evaluate power by explosion and effect of explosion on the human body to perform explosion simulation with LS-DYNA program. It is intended to contribute to the exact cause of the accident investigation and the same type of accident prevention.

Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction (효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술)

  • Park, Dongkeon;Kang, Kyeong-Min;Bae, Jin-Woo;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

Directional Predictive Analysis of Pre-trained Language Models in Relation Extraction (관계 추출에서 사전학습 언어모델의 방향성 예측 분석)

  • Hur, Yuna;Oh, Dongsuk;Kang, Myunghoon;Son, Suhyune;So, Aram;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.482-485
    • /
    • 2021
  • 최근 지식 그래프를 확장하기 위해 많은 연구가 진행되고 있다. 지식 그래프를 확장하기 위해서는 relation을 기준으로 entity의 방향성을 고려하는 것이 매우 중요하다. 지식 그래프를 확장하기 위한 대표적인 연구인 관계 추출은 문장과 2개의 entity가 주어졌을 때 relation을 예측한다. 최근 사전학습 언어모델을 적용하여 관계 추출에서 높은 성능을 보이고 있지만, entity에 대한 방향성을 고려하여 relation을 예측하는지 알 수 없다. 본 논문에서는 관계 추출에서 entity의 방향성을 고려하여 relation을 예측하는지 실험하기 위해 문장 수준의 Adversarial Attack과 단어 수준의 Sequence Labeling을 적용하였다. 또한 관계 추출에서 문장에 대한 이해를 높이기 위해 BERT모델을 적용하여 실험을 진행하였다. 실험 결과 관계 추출에서 entity에 대한 방향성을 고려하지 않음을 확인하였다.

  • PDF