• 제목/요약/키워드: Human endometrial cells

검색결과 53건 처리시간 0.029초

TGF-β1에 의하여 유도된 인간자궁내막의 탈락막화(Decidualization)에 있어서 ERK (Extracellular Signal Regulated Kinas)와 PPARγ (Peroxisome Proliferator-Activated Receptor Gamma)의 역할 (Role of ERK (Extracellular Signal Regulated Kinas) and PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) on TGF-β1 Induced Human Endometrial Stromal Cell Decidualization)

  • 장혜진;이재훈;김미란;황경주;박동욱;민철기
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제33권2호
    • /
    • pp.105-113
    • /
    • 2006
  • 목 적: 본 연구를 통해 $TGF-{\beta}1$에 의해 유도된 인간자궁내막의 탈락막화 과정에서 ERK와 $PPAR{\gamma}$의 역할을 규명하고자 하였다. 연구방법: 자궁내막 기질세포는 DMEM/F12 (10% FBS, 1 nM E2 and 100 nM P4) 조건에서 배양하였다. 연구 목적에 따라 $TGF-{\beta}1$ (5 ng/ml), Rosiglitazone (50 nM)와 PD98059 ($20{\mu}M$)를 배양액에 첨가하였다. Trypan-Blue와 hematocytometer를 이용하여 현미경하에서 세포의 개수를 측정하였다. Enzyme-linked immunosorbent assay (ELISA)와 western blotting 방법을 사용하여 단백질의 발현 정도를 관찰하였다. 결과 및 결론: 배양액에 $TGF-{\beta}1$을 첨가하여 세포의 증식 정도를 측정한 결과 $TGF-{\beta}1$이 세포의 증식을 억제하는 것을 알 수 있었다. 또한 배양된 세포로부터 PGE2 및 prolactin의 발현을 유도하는 것을 알 수 있었다. 이러한 $TGF-{\beta}1$의 작용은 Smad 및 ERK의 활성화를 통하여 일어남을 알 수 있었다. $PPAR{\gamma}$의 기질인 rosiglitazone을 배양액에 첨가한 결과 $TGF-{\beta}1$에 의한 세포 증식의 억제가 역전되는 것을 알 수 있었다. 뿐만 아니라, 세포 내 ERK의 활성 역시 억제 시켰으며 이 결과 PGE2와 prolactin의 발현이 억제 되는 것을 관찰할 수 있었다. 따라서 본 연구를 통해 $TGF-{\beta}1$에 의한 자궁내막 기질세포의 탈락막화는 Smad와 ERK의 활성화를 통하여 이루어지며 이러한 과정은 $PPAR{\gamma}$에 의해 억제됨을 알 수 있었다.

The Inhibition Effect of Triptolide on Human Endometrial Carcinoma Cell Line HEC-1B: a in vitro and in vivo Studies

  • Ni, Jing;Wu, Qiang;Sun, Zhi-Hua;Zhong, Jian;Cai, Yu;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권11호
    • /
    • pp.4571-4576
    • /
    • 2015
  • Background: To investigate the inhibitory effect and the underlying mechanism of triptolide on cultured human endometrial carcinoma HEC-1B cells and corresponding xenograft. Materials and Methods: For in vitro studies, the inhibition effect of proliferation on HEC-1B cell by triptolide was determined by MTT assay; cell cycle and apoptosis of the triptolide-treated and untreated cells were detected by flow cytometry. For in vivo studies, a xenograft tumor model of human endometrial carcinoma was established using HEC-1B cells, then the tumor-bearing mice were treated with high, medium, and low-dose ($8{\mu}g$, $4{\mu}g$ and $2{\mu}g/day$) triptolide or cisplatin at $40{\mu}g/day$ or normal saline as control. The mice were treated for 10-15 days, during which body weight of the mice and volume of the xenograft were weighted. Then expression of Bcl-2 and vascular endothelial growth factor (VEGF) was analyzed by SABC immunohistochemistry. Results: Cell growth was significantly inhibited by triptolide as observed by an inverted phase contrast microscope; the results of MTT assay indicated that triptolide inhibits HEC-1B cell proliferation in a dose and time-dependent manner; flow cytometry showed that low concentration (5 ng/ml) of triptolide induces cell cycle arrest of HEC-1B cells mainly at S phase, while higher concentration (40 or 80 ng/ml) induced cell cycle arrest of HEC-1B cells mainly at G2/M phase, and apoptosis of the cells was also induced. High-dose triptolide showed a similar tumor-inhibitory effect as cisplatin (-50%); high-dose triptolide significantly inhibited Bcl-2 and VEGF expression in the xenograft model compared to normal saline control (P<0.05). Conclusions: triptolide inhibits HEC-1B cell growth both in vitro and in mouse xenograft model. Cell cycle of the tumor cells was arrested at S and G2/M phase, and the mechanism may involve induction of tumor cell apoptosis and inhibition of tumor angiogenesis.

인간 자궁내막의 탈락막화에서 HOXA10 유전자의 역할 (Role of HOXA Gene in Human Endometrial Decidualization)

  • 이창세;박동욱;박찬우;김태진
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권3호
    • /
    • pp.207-216
    • /
    • 2010
  • 목 적: Small interfering RNA (siRNA)를 이용하여 homeobox (HOXA) 10 유전자의 발현이 억제된 일차배양 자궁내막 세포를 이용하여 자궁내막 탈락막화 (decidualization)에 HOXA유전자를 포함한 세포 내 신호전달기전을 분석하고자 하였다. 연구방법: 본원 산부인과에서 자궁내막 질환 이외의 이유로 전자궁 적출술을 받은 환자의 자궁내막 조직을 채취한다. $37^{\circ}C$에서 20분간 Trypsin-EDTA를 처리하여 단일세포로 분리한 후 10% fetal bovine serum이 첨가된 DMEM/F12 배지를 이용하여 24시간 동안 $37^{\circ}C$ 5% $CO_2$ 배양기 안에서 배양한다. 배양된 자궁내막 세포를 HOXA10 siRNA로 첨가한 후 TGF-${\beta}1$을 10 ng/mL 농도로 48시간 첨가하여 탈락막화를 유도한다. 배양된 자궁내막 세포에서 reverse transcription polymerase chain reaction을 이용하여 HOXA10, prolactin, cyclooxygenase (COX)-2, peroxisome proliferator-activated receptor (PPAR)-$\gamma$ 및 wingless-type MMTV integration site family (Wnt)의 발현을 관찰하였다. 결 과: HOXA10의 경우 transforming growth factor (TGF)-${\bata}1$과 HOXA10 siRNA를 처리하지 않은 대조군에 비하여 TGF-${\beta}1$을 처리한 군에서 약 1.8배 가량 발현양의 증가를 보였다. 자궁내막 탈락막 표지인자로 알려져 있는 prolactin의 경우 TGF-${\beta}1$을 처리한 경우 대조군에 비하여 유의한 발현의 증가를 보였으며 HOXA10 siRNA를 처리한 군에 있어서는 TGF-${\beta}1$을 첨가하더라도 prolactin mRNA의 발현양의 증가를 관찰할 수 없었다. 또한 자궁내막 세포의 분화인자로 알려져 있는 COX-2의 발현 역시 HOXA10 siRNA를 처리한 군에 있어서 mRNA 발현양이 유의하게 감소하였으며 TGF-${\beta}1$을 처리하여도 발현의 증가를 관찰할 수 없었다. Wnt4의 경우 HOXA10 siRNA를 이용하여 HOXA10의 발현을 억제한 경우 대조군에 비하여 유의하게 mRNA의 발현양이 감소하였으며 이러한 발현양의 감소는 TGF-${\beta}1$을 처리하여도 증가됨을 관찰할 수 없었다. PPAR$\gamma$의 발현은 HOXA10 siRNA의 처리와 관계없이 TGF-${\beta}1$에 의하여 감소하는 것을 관찰할 수 있었다. 결 론: Progesterone에 의하여 자궁내막 상피세포에서 분비되는 것으로 알려져 있는 TGF-${\beta}1$에 의한 자궁내막 기질세포의 분화 (탈락막화)는 HOXA10 및 Wnt에 의하여 조절되는 것으로 생각된다.

Effects of human chorionic gonadotropin-producing peripheral blood mononuclear cells on the endometrial receptivity and implantation sites of the mouse uterus

  • Delsuz Rezaee;Mojgan Bandehpour;Bahram Kazemi;Sara Hosseini;Zeinab Dehghan;Saiyad Bastaminejad;Mohammad Salehi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권4호
    • /
    • pp.248-258
    • /
    • 2022
  • Objective: This research investigated the effects of human chorionic gonadotropin (HCG)-producing peripheral blood mononuclear cells (PBMCs) on the implantation rate and embryo attachment in mice. Methods: In this experimental study, a DNA fragment of the HCG gene was cloned into an expression vector, which was transfected into PBMCs. The concentration of the produced HCG was measured using enzyme-linked immunosorbent assay. Embryo attachment was investigated on the co-cultured endometrial cells and PBMCs in vitro. As an in vivo experiment, intrauterine administration of PBMCs was done in plaque-positive female mice. Studied mice were distributed into five groups: control, embryo implantation dysfunction (EID), EID with produced HCG, EID with PBMCs, and EID with HCG-producing PBMCs. Uterine horns were excised to characterize the number of implantation sites and pregnancy rate on day 7.5 post-coitum. During an implantation window, the mRNA expression of genes was evaluated using real-time polymerase chain reaction. Results: DNA fragments were cloned between the BamHI and EcoRI sites in the vector. About 465 pg/mL of HCG was produced in the transfected PBMCs. The attachment rate, pregnancy rate, and the number of implantation sites were substantially higher in the HCG-producing PBMCs group than in the other groups. Significantly elevated expression of the target genes was observed in the EID with HCG-producing PBMCs group. Conclusion: Alterations in gene expression following the intrauterine injection of HCG-producing PBMCs, could be considered a possible cause of increased embryo attachment rate, pregnancy rate, and the number of implantation sites.

자궁내막증 환자의 자궁내막내 성호르몬 수용체, Integrins, Cyclooxygenase의 발현과 변이 양상 (Expression Pattern of Progesterone Receptor, Integrin, Cyclooxygenase (COX) in Human Endometrium of Patients with Endometriosis)

  • 김미란;박동욱;권혁찬;황경주;주희재;조동제;김세광;오기석
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제27권2호
    • /
    • pp.117-131
    • /
    • 2000
  • Objectives: To develop a new immunohistochemical marker system for supplementation of the Noyes histological classification of the endometrium in women of child bearing age with regular menstrual cycles, and to employ this system to evaluate pathologic factors involved in endometriosis, and thus to ascertain if it is useful in diagnosis. Materials and Methods: Endometrial biopsies were sampled from the posterior fundus of 41 (24 proliferative phases, 17 secretory phases) women with regular menstrual cycles (28-32 days), and each sample was immunohistochemically stained according to Noyes et al (1975) for determination of expression for estrogen receptor (ER), progesterone receptor (PR), integrin ${\alpha}_1$, ${\alpha}_4$, ${\beta}_3$, COX-1 and COX-2. Then, the PR, integrin ${\beta}_3$ and COX-2 which were clearly expressed in the luteal phase was with endometrial samples were obtained from 20 cases of normal patients (group 1) and 25 cases with endometriosis (group 2) after confirming the day of ovulation by sex steroid level measurements 7-8 days after ovulation Results: In the regular menstruation group the expression of ER showed a tendency to be increased in the proliferative phase and decreased in the secretory phase, and was the highest in the proliferative phase. However, PR in the stromal cells showed no change in the entire menstrual cycle while in the epithelial cells, PR reached a peak in the late proliferative phase and was almost absent in the secretory phase. Integrin (${\alpha}_1$, ${\alpha}_4$, and ${\beta}_3$ expression in the epithelial cells was absent in the proliferative phase but ${\alpha}_1$ was strongly expressed starting from the early secretory phase into the entire secretory phase. ${\alpha}_4$ was expressed strongly in the early and mid secretory phases and disappeared in the late proliferative phase, while ${\beta}_3$ appeared after the mid secretory phase and continued to be expressed until the late secretory phase. Expression in the stromal cells was weak overall and did not show any cyclic pattern. COX-1 expression was shown as a cyclic pattern in the stromal and epithelial cells and was particularly strongly expressed in the mid secretory phase of epithelial cells, and in the mid secretory and menstruation phase of stromal cells. In the endometrial epithelial cells there was strong expression during the entire cycle with stronger expression in the secretory phase compared to the prolferative phase. COX-2 was clearly expressed in the late proliferative, early and mid secretory phases in the stromal cells. No expression was observed in the proliferative phase of the epithelial cells, but which began to appear in the early secretory phase reaching a significant pattern from the mid secretory phase onwards. There was almost no expression in the stromal cells. In the cases with endometriosis showing normal endometrial maturation according to the Noyes classification, PR expression was increased while Integrin-${\beta}_3$의 expression was significantly decreased compared to the normal group. Also, COX-2 expression was slightly decreased in the stromal cells of patients with endometriosis while it was significantly increased in the stromal cells. Conclusion: Immunohistochemical markers can supplement the original Noyes classification of histological endometrial dating and therefore ascertain existing pathologic conditions. Particularly for patients with endometriosis with normally mature endometrial cells, changes in COX-2 and integrin expression patterns may assist in elucidating pathophysiologic mechanisms and therefore aid in the diagnosis of abnormal implantation conditions, and consequently determine a treatment modality.

  • PDF

인간의 정상 자궁내막조직에서의 BCL-2와 BAX 단백질의 발현 (BCL-2 and BAX Expression in Normal Human Endometrium)

  • 홍순옥;이병석;양우익;이지성;차동현;조용선;김정연;박기현;조동제;송찬호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제27권3호
    • /
    • pp.245-251
    • /
    • 2000
  • Objective: To investigate the distribution of BCL-2, BAX proteins and DNA fragmented cells in the normal human endometrium during at each menstrual cycle in order to find out whether apoptosis regulates cyclic endometrial change. Methods: Normal endometrial tissues were obtained from 40 patients, $32{\sim}45$ year of age, all with regular menstrual cycle, who were undergoing abdominal hysterectomy for myoma of uterus or cervical intraepithelial neoplasia for the period from 1992 through 1997. Immunohistochemical staining was used to determine the expression of BCL-2 and BAX protein with paraffin-embedded tissues. Results: BCL-2 was expressed on the glandular epithelial cells and stromal cells during the proliferative phase. The intensity of BCL-2 was increased predominantly on the basal layer than the functional layer in late proliferative phase. However, BCL-2 immunoreactivity was decreased in the secretory phase. BAX was expressed predominantly during the secretory phase. The intesity was increased in late secretory phase rather than early secretory phase. DNA fragmented cells were detected in a few cells at each phase. However, it was increased during the late secretory phase. Conclusion: Apoptosis-related genes, BCL-2 and BAX, may play a role in the regulation of cyclic endometrial change.

  • PDF

Influence of Interferon-${\tau}$ on the Production of Prostaglandins, Cyclooxygenase-2 Expression In Vitro and Release of Progesterone in Bovine Endometrial Cells

  • Lee, Ji-Eun;Lee, Yong-Seung;Yoo, Han-Jun;Lee, Kyoung-Jin;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • 한국수정란이식학회지
    • /
    • 제27권4호
    • /
    • pp.245-252
    • /
    • 2012
  • The purpose of the present study was to investigate the effect of IFN-${\tau}$ on prostaglandin synthesis, cyclooxygenase-2 (COX-2) gene expression in vitro and concentration of progesterone (P4) in endometrial cells. Epithelial and stromal cells cultured in vitro were isolated from bovine endometrium and stimulated with increasing doses of IFN-${\tau}$ (0, 0.02, 0.2 and 2 ug/ml). Human chorionic gonadotropin (hCG, 1.5 IU/ml) was used as a positive control. Prostaglandin $E_2$ and $F_{2{\alpha}}$ levels in the culture media were analyzed by enzyme immunoassays and total RNA was extracted from the cells for RT-PCR. P4 concentrations of blood samples were assayed by chemiluminescent immuno assays system. In epithelial cells, COX-2 gene expression was increased in the presence of IFN-${\tau}$ (p<0.05), but it was not significantly different in all groups of stromal cells except for 2 ug/ml IFN-${\tau}$ group (p<0.05). Although IFN-${\tau}$ did not affect $PGE_2$ and $PGF_{2{\alpha}}$ production in epithelial cells, it decreased $PGE_2$ and $PGF_{2{\alpha}}$ production significantly in stromal cells (p<0.05). In vivo experiment, blood concentration of P4 was significantly increased after addition of IFN-${\tau}$ (1 ug/ml). The results indicate that PG production was mediated by COX-2 expression in stromal cells but it was not affected in epithelial cells and this suggest that treatment of IFN-${\tau}$ could improve the implantation environment of uterine by maintenance of high P4 concentration.