• Title/Summary/Keyword: Human comfort

Search Result 599, Processing Time 0.021 seconds

Evaluation of Comfort and Hand Characteristics of Lining Fabrics (안감용 직물의 태와 착용 쾌적성 평가)

  • Shim, Huen-Sup;McCullough, Elizabeth A.
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • The purpose of this study was to evaluate the comfort and fabric hand characteristics of selected lining fabrics made of acetate and polyester. The comfort of the linings was determined by human subjects wearing suit blazers constructed with different lining materials in an environmental chamber controlled at $30.6^{\circ}C$ air temperature and 50% relative humidity. The hand characteristics of the lining fabrics were determined by five trained panelists using standard fabric reference samples. The effect of lining fabrics on the subjects' thermal sensations was not statistically significant. But the subjects voted warmer when wearing the polyester surah lined blazer or the polyester taffeta blazer than wearing the acetate blazers. The results of the subjective comfort evaluation indicated that, in general, the subjects rated the acetate linings significantly less sticky, clammy, damp, and non-absorbent than the polyester linings. Acetate surah was rated a little higher than the other acetate fabrics on these comfort descriptors. The results of the subjective hand evaluation indicated that the lining fabrics rated low on the geometric and mechanical hand characteristics and rated moderate on noise. Acetate surah scored the highest on most of the hand characteristics, whereas, polyester taffeta scored the lowest.

Improvement of Seat Comfort by Reducing the Human Vibration (인체진동을 고려한 시트 안락성 향상)

  • 장한기;김승한;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.444-449
    • /
    • 2001
  • The purpose of the work is to improve comfort of a car seat, especially dynamic comfort which affects driver's discomfort during the long time driving. Definition of dynamic comfort was made before the investigation of which parameter affects seat comfort. In order to optimize design parameters so as to maximize seat comfort as well as to know the cause of discomfort, benchmarking on a target vehicle and competitive vehicles was performed, which showed both the vibration transmission characteristics and the compression set due to dynamic loading should be reduced. As a solution ball rebounds was increased by about 10% of the original foam, which showed reduction of S.E.A.T. value by 10% and of compression set by 60%.

  • PDF

Experimental Study on Thermal Sensation Evaluation in Heating(part I: Emotion & Sensibility Image Evaluation by Indoor Temperature Change in Heating) (실내 난방시 온열쾌적성 평가에 관한 연구(part I;실내 난방시 실온변화에 따른 감성이미지 평가))

  • 한남규;금종수;김형철;김동규;김창연
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.41-46
    • /
    • 2003
  • In recently, Is inhabiting more than 70% indoors during a day in case of company employee and ordinary people which is looking at usual business. Therefore Thermal comfort of human body about indoor temperature and air flow acting very heftily. When intestine temperature is fallen for external low temperature and air flow in winter in case enter into heated room feel comfort by effect of temperature and feel comfort or discomfort by room heating condition gradually. Therefore it is important that grasp thermal comfort about temperature and air flow in heating to keep continuous comfort in indoor dwelling. Temperature and thermal comfort factor of emotion & sensitivity image exert fair effect since heating middle although thermal comfort change greatly effect on sensation about temperature at actuality heating early. Need much study yet in vantage point of emotion & sensitivity although much study were held about thermal and comfort sensibility and when heat in existing research until now. Therefore this study is targeting that evaluate thermal comfort through introduction of estimation method by emotion & sensibility image real and synthetic sensibility about thermal environment that is becoming winter heating.

  • PDF

Shoes Satisfaction and Selection Criteria According to Women's BMI (성인여성들의 체질량지수에 따른 구두 선택기준 및 만족도)

  • Kim, Yong Sook
    • Korean Journal of Human Ecology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2015
  • The purpose of this study was to identify the shoes satisfaction and selection criteria according to women's BMI. Data was collected from 323 women in their 20-40's. Factor analysis, one-way ANOVA, Chi-square test, and multi regression analysis were done. Women were segmented into the under weight group, the regular weight group, and the over weight group according to their BMI. The factors of shoes selection criteria were fit and practicality, appearance, fashion and brand, materials and sewing, comfort and economy, and size. Generally most women were satisfied with the styles of shoes but dissatisfied with materials and size. The underweight group's foot was shorter and narrower, shoes was shorter and heel height was higher but the over weight group was opposite. The under weight group were satisfied with higher heel and comfort and practical shoes. The regular weight group were satisfied with higher heel and comfort and economy shoes but the over weight group was dissatisfied with higher heel and comfort and economy shoes.

Assessment on Thermal Environment and Human Thermal Comfort in Residential Building Block through Field Measurement (실측을 통한 공동주택 단지 내에서의 온열환경 및 거주자 쾌적감 평가에 관한 연구)

  • Lim, Jong-Yeon;Hwang, Hyo-Keun;Song, Doo-Sam;Kim, Tae-Yeon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.311-317
    • /
    • 2008
  • As outdoor environment become worse due to concentration of population in large cities, the importance of environmental control strategies such as the arrangement of green space or water space and ventilation paths, has been increasingly recognized. However, most of the studies focus on the assessment on outdoor thermal environment, few studies focus on the interrelationship between thermal environment in residential block and human thermal comfort. The aims of this study is to develop the outdoor planning method to reduce the heating/cooling load in an apartment unit or entire block by the sustainable approaches in outdoor environmental design. In this paper, on the basis of the prior studies, the effect of the outdoor thermal environment on human thermal comfort will be analysed.

  • PDF

Research on Serviceability Evaluation Methods for Human Comfort in Relation to the Motion of Floating Structures (부유식 인프라의 동요와 인간의 편안함에 대한 사용성 평가방법 연구)

  • Jeong, Youn-Ju;Kim, Jeongsoo;Kim, Young-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.595-602
    • /
    • 2024
  • This paper analyzes serviceability guidelines and index related to the motion of floating structures concerning human comfort. The guidelines for the motion of floating structures regarding human comfort must meet requirements such as including frequency range of floating structure and providing index for vertical direction, which is a major component of human discomfort. Therefore, ISO 2631-1:1997 was found to be applicable. The evaluation of serviceability of the floating structure showed that the frequency-weighted RMS acceleration, due to the characteristics of frequency weighting function, is significantly influenced by the period of the floating structure. Additionally, the frequency-weighted RMS acceleration presented lower values compared to the general RMS acceleration. These results are expected to contribute to the establishment of reasonable guidelines for human activities to the motion of floating structures.

A study on characteristics of thermal comfort for artificial environmental experiment in winter (동계 인공환경실험에 의한 온열쾌적특성 연구)

  • 박종일;김경훈;정성일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.721-731
    • /
    • 1998
  • Recently, many researchers are studying the relation between thermal environment and human comfort. The purpose of this study was to obtain basic data which are necessary to determine the thermal comfort sensation and physiological responses for men in winter indoor environment. From January to February 1998, subject experiment was 40 times proceeded under twenty different conditions of air temperature and relative humidity with early-twenty male university students. We examined subjective evaluation, Electrocardiogram(ECG), Electroencephalogram(EEG) of subjects. The results of this study can be summarized as follows : The comfort zone of people in winter was achieved at Standard new effective temperature($SET^*$) $ 25.2^{\circ}C$, PMV range was obtained by Fanger's statistical calculation was -0.27<PMV<+0.62, TSV range obtained subjects vote was -0.76<TSV<+0.36. The largest difference of skin temperature was found at the calf area as air temperature changes. vote rate of human body presented calflongrightarrowheadlongrightarrowforearmlongrightarrowchestlongrightarrowabdo men in turn. Heart rate was decreased at low $SET^*$ and heart rate was increased at high $SET^*$ But there was no change at EEG.

  • PDF

Development of Textile Knowledge Checklist and Analysis of Textile Recognition (의류소계 지식도 측정을 위한 문항개발 및 인지도 평가)

  • Kim, Jeong-Hwa;Lee, Sun-Young;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.15 no.2
    • /
    • pp.293-301
    • /
    • 2006
  • The purpose of this study is to develop a textile knowledge checklist and to analyze university students' textile recognition. After analyzing reliability, difficulty, and discrimination of questions, we developed a standardized tool to measure textile knowledge. The tool has 72 checklist questions, which can be divided into 4 parts: basic property, comfort, management, and finishing. The level of university students' textile knowledge was 68.91 %. The level of basic property was 75.56%, comfort 70.83%, management 64.5% and finishing 64.74%. The recognition of management and finishing was lower than that of basic property and comfort. There existed a significant difference in the textile knowledge by their gender, major, and school year. To elaborate, females, clothing and textile major students, and juniors and seniors showed higher level of textile knowledge. It seemed that comfort was more professional item than management in textile knowledge.

  • PDF

A Study of Thermal Comfort by Winter Temperature Humidity Change (겨울철 온도 및 습도변화에 따른 온열쾌적감에 관한 연구)

  • Kim, Se-Hwan;Lee, Sung;Kim, Dong-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.803-809
    • /
    • 2007
  • To those who spend most time within a room, comfortable indoor environment is a very critical element to job performance and health. The comfort technology, which is for enhancing comfort in human living, relates with various factors to ensure human activities efficient, comfortable, safe and satisfactory. Experiments were performed in environmental chamber. Experimental conditions were combinations from three temperatures of 18, 22 and 26C, and two relative humidity levels of 45 and 60%. Air-flow was controlled to 0.1m/s through the experiment. Four male and four female university students participated in the experiments. They had normal blood pressure and their body temperature was under $37^{\circ}C$. From the experiments for evaluating thermal sensation to the air-heating conditions, relationships among TSV, CSV, $SET^*$, PMV were analyzed. Results can be summarized as followings; Thermal neutrality $SET^*$ of man and female was $24.8^{\circ}C$. In air-heating condition, $SET^*$ values for thermal comfort zone were $23.0{\sim}26.5^{\circ}C$. These values were higher than the values from ASHRAE.

Evaluating Methods of Vibration Exposure and Ride Comfort in Car

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • Objective: This paper studies the method of measuring whole-body vibration in the car and terms associated. Background: Human exposure to vibration can be broadly classified as localized and whole-body vibration. The whole-body vibration affects the entire body of the exposed person. It is mainly transmitted through the seat surfaces, backrests, and through the floor to an individual sitting in the vehicle. It can affect the comfort, performance, and health of individuals. Method: Human responses to whole-body vibration can be evaluated by two main standards such as ISO 2631 and BS 6841. The vibration is measured at 8 axes - three translations at feet, 3 translations of hip and two translations of back proposed by Griffin. B&K's sensors used in this study are the 3-axes translational acceleration sensor to measure the translational accelerations at the hip, back and foot. Results: The parameters associated with the whole-body vibration in the car are frequency weightings, frequency weighted root-mean-square, vibration dose values, maximum transient vibration value, seat effective amplitude transmissibility, ride values and ride comfort. Conclusion: Studied the evaluating methods of vibration exposure and ride comfort. Application: Evaluation of whole-body vibration in the car.