• Title/Summary/Keyword: Human breast epithelial cells

Search Result 100, Processing Time 0.024 seconds

Gold Nanoparticles Induce Apoptosis in MCF-7 Human Breast Cancer Cells

  • Selim, Manar E.;Hendi, Awatif A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1617-1620
    • /
    • 2012
  • Background: Gold nanoparticles have recently been investigated with respect to biocompatibility according to their interactions with cells. The purpose of this study was to examine cytotoxicity and apoptosis induction by well-characterized gold nanoparticles in human breast epithelial MCF-7 cells. Methods: Apoptosis was assessed by TUNEL, cytotoxicity by MTT assay and caspase 3, 9, p53, Bax and Bcl expression by real-time PCR assays. Results: Gold nanoparticles at up to $200\;{\mu}g/mL$ for 24 hours exerted concentration-dependent cytotoxicity and significant upregulation of mRNA expression of p53, bax, caspase-3 & caspase-9, whereas expression of antiapoptotic bcl-2 was down-regulated. Conclusion: To the best of our knowledge this is the first report showing that gold nanoparticles induce apoptosis in MCF-7cells via p53, bax/bcl-2 and caspase pathways.

CELECOXIB ATTENUATES ET-18-O-CH3-INDUCED APOPTOSIS IN H-ras TRANSFORMED HUMAN BREAST EPITHELIAL CELLS

  • Na, Hye-Kyung;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.154-155
    • /
    • 2001
  • Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in response to a variety of proinflammatory agents and cytokines. COX-2 expression has been shown to be elevated in several different types of human cancer. The presence of oncogenic ras has been associated with constitutive induction of COX-2 in certain H-ras transformed cells, and COX-2 overexpression confers resistance to apoptosis.(omitted)

  • PDF

Type I Collagen-induced Pro-MMP-2 Activation is Differentially Regulated by H-Ras and N-Ras in Human Breast Epithelial Cells

  • Kim, In-Young;Jeong, Seo-Jin;Kim, Eun-Sook;Kim, Seung-Hee;Moon, A-Ree
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.825-831
    • /
    • 2007
  • Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin ${\alpha}2$, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.