• Title/Summary/Keyword: Human blastocyst

Search Result 124, Processing Time 0.016 seconds

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Effects of Energy Substrates in Culture Media on Developmental Capacity of Mouse Embryos (배양액에 첨가하는 에너지원이 생쥐 배 발생 능력에 미치는 영향)

  • Park, Kee-Sang;Lee, Hyun-Jung;Park, Sung-Baek;Kim, Ji-Chul;Lee, Taek-Hoo;Chun, Sang-Sik
    • Reproductive and Developmental Biology
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • This study was conducted to examine the effects of energy substrates in different conoentration of carbohydrates in the human oviduct and uterus on the in vitro development of mouse 2-cell embryos. Two-cell embryos were collected from ICR female mice at $46{\sim}50\;hr$ after 5 IU hCG injection and cultured in three different media [control: 0 mM, Guoup A: glucose (G) 0.5 mM + pyruvate (P) 0.32 mM + lactate (L) 10.5 mM, Group B: G 3.15 mM + P 0.1 mM + L 5.83 mM] for 72 hr. Rates of morula formation of group A (72.3%) and B (56.6%) were significantly higher higher (p<0.05) than that of control (34.9%) at 24 hr. However, blastocyst rate was significantly higher (p<0.05) in control (51.8%) than group A (39.8%) and B (28.9%) at hr. At 72 hr, no differences were found in the number of zona-intact, zona-escape and total blastocysts among groups. Mean and ICM cell numbers were significantly higher (p<0.05) in group A (78.0, 13.4) and B (64.4, 11.8) than control (53.1, 5.7), respectively, The percent of ICM were significantly higher (p<0.05) in group A (22.9%) and B (23.7%) than control (14.2%). No differences were round in the TE cell numbers ($34.1{\sim}45.1$). The ICM:TE ratio was significantly higher $34.1{\sim}45.1$ in control (1:6.0) than group A (1:3.4) and B (1:3.4). This study shows that energy substrates added to culture media especially, the oviductal level of carbohydrates increase the developmental capacity of 2-cell mouse embryos.

Study on The Usability of Mouse Hatched Blastocysts in Embryos Transfer (수정란 이식시 생쥐 완전탈출 배반포기배의 유용성 검토)

  • 이봉경;김은영;남화경;이금실;윤산현;박세필;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 1998
  • This study was carried out to investigate the in vivo developmental potential of mouse zona-hatched blastocysts (HBs). The HBs were cultured in vitro until day 5 and day 6 from zygotes produced in vivo and classified to small (S-HBs), medium (M-HBs) and large (L-HBs) on the basis of embryo diameters. The results obtained in these experiments were summarized as follows ; 1) when the blastocysts at day 4 were further cultured for $24\sim48hr$, HBs obtained at day 5 and day 6 culture in vitro were 29.1% and 22.8%, respectively. 2) Also, when the total cell number of HBs were counted, cell numbers of classified HBs on day 5 and day 6 to small ($77.3\pm5.3$, $59.6\pm4.4$), medium ($83.7\pm4.0$, $66.8\pm3.5$) and large ($100.7\pm2.6$, $88.9\pm3.8$) were increased as their size increases. Especially, there were significantly different between S-HBs and L-HBs (p<0.01). 3) In addition, when the classified HBs were transferred into when the classified HBs were transferred into day 3 pseudopregnant recipients, the pregnancy and implantation rates of S-HBs (28.6%, 15.7%), M-HBs (44.4%, 30.9%) and L-HBs (62.5%, 49.1%) at day 5 were increased as their size increases. However, this pattern was not showed in embryo transfer of day 6 HBs. But, when the live fetuses formation against total implantation rates were observed, the result (87.5%) of S-HBs of day 5 was significantly higher than that of the others (p<0.01). Therefore, this study demonstrates that in vitro cultured healthy HBs can not only be developed normally with good pregnancy rates, implantation rates and live fetuses formation, but also served as a fundamental data for utility of supernumerary HBs in human blastocyst transfer.

  • PDF

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection (미세주입을 이용한 난자로의 분리된 미토콘드리아 전달)

  • Baek, Sang-Ki;Byun, June-Ho;Kim, Bo Gyu;Lee, A ram;Cho, Young-Soo;Kim, Ik-Sung;Seo, Gang-Mi;Chung, Se-Kyo;Lee, Joon-Hee;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1445-1451
    • /
    • 2017
  • Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.