• 제목/요약/키워드: Human aortic smooth muscle cell

검색결과 29건 처리시간 0.024초

희렴의 Nitric Oxide 유리를 통한 평활근세포에서의 Apoptosis유도 (Production of Nitric Oxide by Siegesbeckia Glabrescens is Associated with Apoptosis of Vascular Smooth Muscle Cell)

  • 전수영;신동훈;손창우;신흥묵
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1055-1060
    • /
    • 2004
  • Apoptosis is the ability of cells to self-destruct by the activation of an intrinsic cellular suicide program when the cells are no longer needed or when they are seriously damaged. Morphologically, apoptosis is characterized by the appearance of membrane blebbing, cell shrinkage, chromatin condensation, DNA cleavage, and the fragmentation of the cell membrane-bound apoptotic bodies. Siegesbeckia glabrescens Makino (Siegesbeckiae Herba, SG) has been widely used as treatments for arthritis, and fever, as well as detoxification properties. The present studies were undertaken to evaluate if SG has an anti-apoptotic property. Cell viability was measured by XTT and tryphan blue stain. Morphological characteristic of human aortic smooth muscle cells(HASMC) were visualized with a phase-contrast microscope. SG significantly reduced HASMC, but not human umbilical vein endothelial cell(HUVEC), viability in a dose-dependent manner. Confluent untreated cells at 24hrs showed normal morphology, flat with a uniform polygonal shape. SG-treated cells (0.5㎎/㎖) at 24hrs showed apoptotic morphology. Cells became irregular with elongated lamellipodia, and exhibited condensed chromatin in nuclei with occasional endoucleation. There was an increase in the number of apoptotic cells rounding-up and being detached from the substrate. TUNEL staining of SG-treated cells showed dark-brown stains in nuclei and cytosol. Caspases are central components of the machinery responsible for apoptosis and are generally divided into two categories; the initiator caspases, which include caspases-2,-8,-9, and -10, and the effector caspases, which include caspases-3,-6, and -7. SG decreased anti-caspase-3 protein expression, which means activation of caspases-3 activity. It has been reported that there is a link between NO formation and apoptosis. NO production was accelerated by SG treatment in HASMC. L-NNA, NOS inhibitor, inhibited SG-induced apoptosis. These results, therefore, indicated that both caspases-3 and NO production are involved in apoptosis in smooth muscle cells. According to these results, SG may have a potential effect in the treatment of hypertensive atherosclerosis.

혈관이식술 후 내막과다증식에 대한 Epigallocatechin-3-Gallate의 효과 (The Effect of Epigallocatechin-3-Gallate on Intimal Hyperplasia after Vascular Grafting)

  • 박한기;송석원;이미희;박종철;주현철;장병철;박영환
    • Journal of Chest Surgery
    • /
    • 제40권4호
    • /
    • pp.256-263
    • /
    • 2007
  • 배경: 혈관내막과다증식은 혈관평활근세포가 내막에서 과다증식하여 나타나며, epigallocatechin-3-gallate(EGCG)는 혈관평활근세포의 증식을 억제하는 효과가 있는 것으로 알려져 있다. 따라서 EGCG는 혈관내막과다증식을 억제할 수 있을 것으로 생각된다. 대상 및 방법: 다른 농도의 EGCG를 포함한 배양 배지에서 인간제대정 맥내피세포(HUVEC)와 쥐대동맥평활근세포(RASMC)를 배양하고, 세포증식과 이동속도를 측정하였다. 20마리의 개의 양측 경동맥에 자가경정맥을 이식하였으며, 실험군(n=10)에 대해서는 정맥도관을 이식 전 30분간 EGCG용액에 보관하였으며, 이식 후 300mM의 EGCG를 혈관주위에 도포하였다. 6주 후에 경정맥이식편의 내막과 중간막의 두께를 측정하였다. 결과: 내피세포와 혈관평활근세포의 증식은 EGCG에 의해 억제되었다. 혈관평활근세포의 이동성은 EGCG에 의해 억제되었으나, 내피세포의 이동성은 영향을 받지 않았다. 동물실험 결과 대조군에 비해 EGCG군에서 내막의 두께가 얇았으며(p<0.05), 중간막의 두께는 두 군간에 차이가 얼었고, 내막/중간막의 두께비는 EGCG군에서 낮게 관찰되었다(p<0.05). 결론: EGCG는 혈관수술 후 혈관내막과다증식을 억제하는 효과가 있으며, 이는 혈관평활근세포의 증식 및 이동을 억제하여 효과를 나타낸다고 생각된다. 따라서 EGCG는 혈관내막과다증식을 예방하는 치료에 효과적으로 사용될 수 있을 것으로 생각된다.

The Bioinformatics and Molecular Biology Approaches for Vascular Cell Signaling by Advanced Glycation Endproducts Receptor and Small Ubiquitin-Related Modifier

  • Kim, June Hyun
    • Interdisciplinary Bio Central
    • /
    • 제4권4호
    • /
    • pp.12.1-12.6
    • /
    • 2012
  • The advanced glycation endproducts receptor (AGE-R) is a signal transduction receptor for multiligand such as S100b and AGEs. S100b has been demonstrated to activate various cells with important links to atherosclerosis initiation and progression including endothelial cells, and smooth muscle cells via AGE-R, triggering activation of multiple signaling cascades through its cytoplasmic domain. Many studies have suggested AGE-R might even participate in the cardiovascular complications involved in the pathogenesis of type I diabetes. Recently, Small Ubiquitin-Related Modifier 1 (SURM-1 also known as SUMO-1) has been recognized as a protein that plays an important role in cellular post-translational modifications in a variety of cellular processes, such as transport, transcriptional, apoptosis and stability. Computer Database search with SUMOplot Analysis program identified the five potential SURMylation sites in human AGE-R: K43, K44, K123, and K273 reside within the extracellular domain of AGE-R, and lastly K374 resides with the cytosolic domain of AGE-R. The presence of the consensus yKXE motif in the AGE-R strongly suggests that AGE-R may be regulated by SURMylation process. To test this, we decided to determine if AGE-R is SURMylated in living vascular cell system. S100b-stimulated murine aortic vascular smooth muscle cells were used for western blot analysis with relevant antibodies. Taken together, bioinformatics database search and molecular biological approaches suggested AGE-R is SURMylated in living cardiovascular cell system. Whilst SURMylation and AGE-R undoubtedly plays an important role in the cardiovascular biology, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • 제27권3호
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

Hyaluronic acid and proteoglycan link protein 1 suppresses platelet-derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells

  • Dan Zhou;Hae Chan Ha;Goowon Yang;Ji Min Jang;Bo Kyung Park;Bo Kyung Park;In Chul Shin;Dae Kyong Kim
    • BMB Reports
    • /
    • 제56권8호
    • /
    • pp.445-450
    • /
    • 2023
  • The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases.

백수오, 우엉, 마 추출물 혼합비율에 따른 혈관부착인자 VCAM-1의 발현억제 효과 (Suppression of VCAM-1 Expression in Human Aortic Smooth Muscle Cells Treated with Ethanol Extracts of Cynanchum wilfordii Radix, Arctium lappa L., and Dioscorea opposita)

  • 조영미;송해성;장선아;박대원;신유수;정용준;강세찬
    • 한국자원식물학회지
    • /
    • 제29권5호
    • /
    • pp.525-531
    • /
    • 2016
  • 본 연구에서는 혈관염증 억제 효능이 입증된 원료인 백수오, 우엉, 마를 혼합하여 혈관염증을 완화시키고 동맥경화의 발생 위험을 줄일 수 있는 소재를 개발하기 위하여, 혼합물이 혈관염증을 가장 효과적으로 억제하는 배합비율을 찾아내고자 하였다. 백수오, 우엉, 마 단독투여 및 다양한 혼합비로 혼합물을 제조하여 인간유래 동맥 평활근 세포에 공급하였다. 세포부착인자인 VCAM-1의 mRNA 발현에 미치는 영향을 비교하여 가장 강한 억제효과를 나타낸 CADM5 (백수오:우엉:마=2:1:1)을 선택하였다. 선택된 혼합물이 혈관세포에서 얼마나 독성을 나타내는지 실험하였고, 백수오, 우엉, 마 추출혼합물이 혈관염증에 관여된 단백질 발현에 미치는 영향을 측정하였다. CADM5처리 결과 염증으로 인하여 증가하였던 ICAM-1과 VCAM-1 단백질의 발현이 감소하였다. 또한 CADM5를 처리한 결과 혈관내피세포에서 산화적 손상 및 염증 방어와 관련이 있는 HO-1과 Nrf-2의 발현이 증가되었다. 따라서 CADM5이 염증에 의해 유도된 ICAM-1 그리고 VCAM-1의 발현을 조절하고 산화스트레스의 방어기전을 활성화 함으로써 동맥경화증을 유발하는 혈관염증의 초기단계를 억제하여 항염증 작용에 효과가 있음을 기대할 수 있다. 비교적 저농도인 32 ㎍/㎖에서 효과적으로 혈관염증 관련 단백질 발현을 조절하였으므로 본 연구를 통해 선택된 CADM5의 혈관염증개선 및 혈관건강개선 소재로서의 개발 가능성을 확인하였다.

실크/PLGA 하이브리드 필름에서 실크가 인간 대동맥 내피세포의 부착과 증식에 미치는 효과 (Effect of Silk in Silk/PLGA Hybrid Films on Attachment and Proliferation of Human Aortic Endothelial Cells)

  • 이지혜;이소진;김슬지;김경희;김영래;송정은;이동원;강길선
    • 폴리머
    • /
    • 제37권2호
    • /
    • pp.127-134
    • /
    • 2013
  • 혈관내피세포는 혈관 안쪽을 덮고 있는 편평한 세포층으로, 혈관의 기능과 혈관평활근세포의 증식을 조절한다. 폴리락타이드글리콜라이드 공중합체(PLGA)는 물성이 좋고 분해속도를 조절하기 좋은 생분해성 합성고분자이며, 여러 형태로 제조하기 쉽다. 누에에서 얻은 실크 피브로인은 18가지 아미노산으로 구성되어 있고 세포의 부착과 세포 기능 유지에 중요하며 화장품, 의료분야 등 다양한 분야에서 응용되고 있다. 본 연구에서는 용매 증발법을 이용하여 0, 10, 20, 40 및 80 wt%의 실크를 이용하여 실크/PLGA 하이브리드 필름을 만들었으며, MTT, SEM, ELISA, 면역세포화학염색법을 실시하였다. 실크/PLGA 하이브리드 필름에서 실크 함량에 따른 인간 대동맥 내피세포의 부착과 증식을 측정한 결과, 40 wt%의 실크/PLGA 하이브리드 필름에서 세포의 부착과 증식이 가장 높았으며, 이런 결과들은 실크가 세포의 증식에 좋은 영향을 미치고 실크/PLGA 하이브리드 필름의 표면이 인간 대동맥 내피세포의 성장에 알맞은 환경이라는 것을 확인할 수 있었다.

단삼 (Salviae Miltiorrhizae Radix) 메탄올 추출물의 항염증 효과 (Anti-inflammatory effect of Salviae Miltiorrhizae Radix)

  • 윤현정;허숙경;윤형중;박원환;박선동
    • 대한본초학회지
    • /
    • 제22권4호
    • /
    • pp.65-73
    • /
    • 2007
  • Objective : Salvia miltiorrhiza Bunge (Labiatae) (SM), an eminent herbal plant, has been widely used in traditional Chinese medicine for the treatment of vascular diseases such as hypertension. The aim of this study was to determine whether SM inhibits production of nitrite, an index of NO, and proinflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. And this study investigated whether or not SM could reduce tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced inflammatory response in human vascular aortic smooth muscle cells (HASMC) and umbilical vein endothelial cells (HUVEC). Methods : Cytotoxic activity of SM on RAW 264.7 cells was using 5-(3-caroboxymeth-oxy phenyJ)-2H-tetra-zolium inner salt (MTS) assay. We measured the NO production using Griess Reagent System. Production of Proliflammatory cytokines was measured by Enzyme-Linked Immunosorbent Assay (ELISA). Results : Our results indicated that SM significantly inhibited the LPS-induced NO production accompanied by an attenuation of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), IL-6 and monocyte chemoattractant protein (MCP)-1 formation in macrophages. SM decreased TNF-${\alpha}$-induced IL-8, IL-6 production, and intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression. Conclusion : These results indicate that SM has potential as an anti-inflammatory agent.

  • PDF

Carpinus turczaninowii extract modulates arterial inflammatory response: a potential therapeutic use for atherosclerosis

  • Son, Youn Kyoung;Yoon, So Ra;Bang, Woo Young;Bae, Chang-Hwan;Yeo, Joo-Hong;Yeo, Rimkyo;An, Juhyun;Song, Juhyun;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • 제13권4호
    • /
    • pp.302-309
    • /
    • 2019
  • BACKGOURND/OBJECTIVES: Vascular inflammation is an important feature in the atherosclerotic process. Recent studies report that leaves and branches of Carpinus turczaninowii (C. turczaninowii) have antioxidant capacity and exert anti-inflammatory effects. However, no study has reported the regulatory effect of C. turczaninowii extract on the arterial inflammatory response. This study therefore investigated modulation of the arterial inflammatory response after exposure to C. turczaninowii extract, using human aortic vascular smooth muscle cells (HAoSMCs). MATERIALS/METHODS: Scavenging activity of free radicals, total phenolic content (TPC), cell viability, mRNA expressions, and secreted levels of cytokines were measured in LPS-stimulated (10 ng/mL) HAoSMCs treated with the C. turczaninowii extract. RESULTS: C. turczaninowii extract contains high amounts of TPC ($225.6{\pm}21.0mg$ of gallic acid equivalents/g of the extract), as well as exerts time-and dose-dependent increases in strongly scavenged free radicals (average $14.8{\pm}1.97{\mu}g/mL$ $IC_{50}$ at 40 min). Cell viabilities after exposure to the extracts (1 and $10{\mu}g/mL$) were similar to the viability of non-treated cells. Cytokine mRNA expressions were significantly suppressed by the extracts (1 and $10{\mu}g/mL$) at 6 hours (h) after exposure. Interleukin-6 secretion was dose-dependently suppressed 2 h after incubation with the extract, at $1-10{\mu}g/mL$ in non-stimulated cells, and at 5 and $10{\mu}g/mL$ in LPS-stimulated cells. Similar patterns were also observed at 24 h after incubation with the extract (at $1-10{\mu}g/mL$ in non-stimulated cells, and at $10{\mu}g/mL$ in the LPS-stimulated cells). Soluble intracellular vascular adhesion molecules (sICAM-1) secreted from non-stimulated cells and LPS-stimulated cells were similarly suppressed in a dose-dependent manner after 24 h exposure to the extracts, but not after 2 h. In addition, sICAM-1 concentration after 24 h treatment was positively related to IL-6 levels after 2 h and 24 h exposure (r = 0.418, P = 0.003, and r = 0.524, P < 0.001, respectively). CONCLUSIONS: This study demonstrates that C. turczaninowii modulates the arterial inflammatory response, and indicates the potential to be applied as a therapeutic use for atherosclerosis.