• 제목/요약/키워드: Human activity classification

검색결과 100건 처리시간 0.03초

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

Human activity classification using Neural Network

  • Sharma, Annapurna;Lee, Young-Dong;Chung, Wan-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.229-232
    • /
    • 2008
  • A Neural network classification of human activity data is presented. The data acquisition system involves a tri-axial accelerometer in wireless sensor network environment. The wireless ad-hoc system has the advantage of small size, convenience for wearability and cost effectiveness. The system can further improve the range of user mobility with the inclusion of ad-hoc environment. The classification is based on the frequencies of the involved activities. The most significant Fast Fourier coefficients, of the acceleration of the body movement, are used for classification of the daily activities like, Rest walk and Run. A supervised learning approach is used. The work presents classification accuracy with the available fast batch training algorithms i.e. Levenberg-Marquardt and Resilient back propagation scheme is used for training and calculation of accuracy.

  • PDF

가속도계와 자이로스코프 데이터를 사용한 인간 행동 인식 기반의 템포 지향 음악 추천 시스템 (Tempo-oriented music recommendation system based on human activity recognition using accelerometer and gyroscope data)

  • 신승수;이기용;김형국
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.286-291
    • /
    • 2020
  • 본 논문에서는 템포 기반의 음악 분류와 센서 기반의 인간 행동 인식을 통한 음악을 추천하는 시스템을 제안한다. 제안하는 방식은 템포 기반의 음악 분류를 통해 음악 파일을 색인하고, 인식된 행동에 따라 적합한 음악을 추천한다. 정확한 음악 분류를 위해 변조 스펙트럼 기반의 동적 분류기와 멜 스펙트로그램 기반의 시퀀스 분류기가 함께 사용된다. 또한, 간단한 스마트폰 가속도계, 자이로스코프 센서 데이터가 심층 스파이킹 신경망에 적용되어 행동 인식 성능을 향상시킨다. 마지막으로 인식된 행동과 색인된 음악 파일의 관계를 고려한 매핑 테이블을 통해 음악 추천이 수행된다. 실험 결과는 제안된 시스템이 음악 플레이어가 있는 실제 모바일 장치에 사용하기에 적합하다는 것을 보여준다.

Navigator Lookout Activity Classification Using Wearable Accelerometers

  • Youn, Ik-Hyun;Youn, Jong-Hoon
    • Journal of information and communication convergence engineering
    • /
    • 제15권3호
    • /
    • pp.182-186
    • /
    • 2017
  • Maintaining a proper lookout activity routine is integral to preventing ship collision accidents caused by human errors. Various subjective measures such as interviewing, self-report diaries, and questionnaires have been widely used to monitor the lookout activity patterns of navigators. An objective measurement of a lookout activity pattern classification system is required to improve lookout performance evaluation in a real navigation setting. The purpose of this study was to develop an objective navigator lookout activity classification system using wearable accelerometers. In the training session, 90.4% accuracy was achieved in classifying five fundamental lookout activities. The developed model was then applied to predict real-lookout activity in the second session during an actual ship voyage. 86.9% agreement was attained between the directly observed activity and predicted activity. Based on these promising results, the proposed unobstructed wearable system is expected to objectively evaluate navigator lookout patterns to provide a better understanding of lookout performance.

영상기반 인체행위분류를 위한 전이학습 중추네트워크모델 분석 (Transfer Learning Backbone Network Model Analysis for Human Activity Classification Using Imagery)

  • 김종환;류준열
    • 한국시뮬레이션학회논문지
    • /
    • 제31권1호
    • /
    • pp.11-18
    • /
    • 2022
  • 최근 공공장소 및 시설에서 범죄예방 및 시설 안전을 목적으로 영상정보 기반의 인체의 행위를 분류하는 연구가 활발히 진행되고 있다. 이러한 인체 행위분류의 성능을 향상하기 위해서 대부분의 연구는 전이학습 기반의 딥러닝을 적용하고 있다. 그러나 딥러닝의 기반이 되는 중추 네트워크 모델(Backbone Network Model)의 수가 증가하고 아키텍처가 다양해짐에도 불구하고, 소수의 모델만 사용하는 분위기 때문에 운용목적에 적합한 중추 네트워크 모델을 찾는 연구는 미흡한 실정이다. 본 연구는 영상정보를 기초로 인체 행위를 분류하는 인공지능 모델을 개발하기 위해 최근에 개발된 5가지의 딥러닝 중추 네트워크 모델을 대상으로 전이학습을 적용하고 각 모델의 정확도 및 학습효율 측면에서 비교 및 분석하여 가장 효율이 높은 모델을 제안하였다. 이를 위해, 기본적인 인체 행위가 아닌 운동 종목 기반의 활동적이고 신체접촉이 높은 12가지의 인체 활동을 선정하고 관련된 7,200개의 이미지를 수집하였으며, 5가지의 중추 네트워크 모델에 총 20회의 전이학습을 균등하게 적용하고 학습과정과 결과성능을 통해 인체 행위를 분류하는데 적합한 중추 네트워크 모델을 정량적으로 비교 및 분석하였다. 그 결과 XceptionNet 모델이 학습 및 검증 정확도에서 0.99 및 0.91로, Top 2 및 평균 정밀도에서 0.96 및 0.91로 나타났으며 학습 소요시간은 1,566초, 모델용량의 크기는 260.4MB로 정확도와 학습효율 측면에서 다른 모델보다 높은 성능이 나타남을 확인할 수 있었다. 이러한 결과는 전이학습을 적용하여 인체 행위분류를 진행하는 다양한 연구 분야에 활용되기를 기대한다.

채널 상태 정보를 활용한 LoS/NLoS 식별 기반 인간 행동 인식 시스템 (LoS/NLoS Identification-based Human Activity Recognition System Using Channel State Information)

  • 권혁돈;권정혁;이솔비;김의직
    • 사물인터넷융복합논문지
    • /
    • 제10권3호
    • /
    • pp.57-64
    • /
    • 2024
  • 본 논문에서는 수신환경에 따라 변화하는 인간 행동 인식 (Human Activity Recognition, HAR)의 정확도를 향상시키기 위해 채널 상태 정보 (Chanel State Information, CSI)를 활용한 Line-of-Sight (LoS)/Non-Line-of-Sight (NLoS) 식별 기반 HAR 시스템을 제안한다. 제안 시스템은 수신환경을 고려한 HAR 시스템을 위해 Preprocessing phase, Classification phase, Activity recognition phase의 세 동작 단계를 포함한다. Preprocessing phase에서는 CSI 원시 데이터로부터 진폭이 추출되고, 추출된 진폭 내 노이즈가 제거된다. Classification phase에서는 데이터 수신환경이 LoS 환경 또는 NLoS 환경으로 분류되고, 수신환경 분류 결과를 기반으로 HAR 모델이 결정된다. 마지막으로, Activity recognition phase에서는 결정된 HAR 모델을 활용하여 인간의 동작을 앉기, 걷기, 서 있기, 부재중으로 분류한다. 제안 시스템의 우수성을 입증하기 위해, 실험적 구현을 수행하였으며 제안 시스템의 정확도를 기존 HAR 시스템의 정확도와 비교하였다. 실험 결과, 제안 시스템은 대조군 대비 16.25% 더 높은 정확도를 달성하였다.

Development of a Machine-Learning based Human Activity Recognition System including Eastern-Asian Specific Activities

  • Jeong, Seungmin;Choi, Cheolwoo;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this study is to develop a human activity recognition (HAR) system, which distinguishes 13 activities, including five activities commonly dealt with in conventional HAR researches and eight activities from the Eastern-Asian culture. The eight special activities include floor-sitting/standing, chair-sitting/standing, floor-lying/up, and bed-lying/up. We used a 3-axis accelerometer sensor on the wrist for data collection and designed a machine learning model for the activity classification. Data clustering through preprocessing and feature extraction/reduction is performed. We then tested six machine learning algorithms for recognition accuracy comparison. As a result, we have achieved an average accuracy of 99.7% for the 13 activities. This result is far better than the average accuracy of current HAR researches based on a smartwatch (89.4%). The superiority of the HAR system developed in this study is proven because we have achieved 98.7% accuracy with publically available 'pamap2' dataset of 12 activities, whose conventionally met the best accuracy is 96.6%.

3축 가속도 센서를 이용한 동작분석 알고리즘 설계 (A Design of an Algorithm for Analysis of Activity Using 3-Axis Accelerometer)

  • 이승형;임예택;이경중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.361-367
    • /
    • 2004
  • This paper describes design of an algorithm for analyzing human activity using body-fixed 3-axis accelerometer in the small of the back. In the first step, we distinguish static and dynamic activity period using AC signal analysis. Then five postures were classified by applying the threshold in DC signal corresponding to the static activity period. Also, after comparison of average power and taking negative peak signal in the dynamic activity period, the four dynamic activities were classified by adaptive threshold method. To evaluate the performance of the proposed algorithm, the measured signals obtained from six subjects were applied to the proposed algorithm and the results were compared with the simultaneously measured video data. As a result, the activity classification rate of 95.7% on average was obtained. Overall results show that the proposed classification algorithm has a possibility to be used to analyze the static and dynamic physical activity.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.

Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM

  • Kamal, Shaharyar;Jalal, Ahmad;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1857-1862
    • /
    • 2016
  • Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.