• Title/Summary/Keyword: Human Walking

Search Result 485, Processing Time 0.057 seconds

Human Motion Control Using Dynamic Model (동력학 모델을 이용한 인체 동작 제어)

  • Kim, Chang-Hoe;O, Byeong-Ju;Kim, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

Development of advanced walking assist system employing stiffness sensor

  • Kim, Seok-Hwan;Shunji, Moromugi;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1638-1641
    • /
    • 2004
  • Many walking stands, and assisting tools have been developed for the people with low-limb disability to prevent diseases from bedridden state and to help them walk again. But many of those equipments require user to have some physical strength or balancing ability. In our last research, we developed walking assist system for the people with lower-limb disability. With the system, user can be assisted by actuators, and do not have to worry about falling down. The system adapted the unique closed links structure with four servomotors, three PICs as controller, and four limit switches as HMI (human man interface). We confirmed the adaptability of the system by the experiment. In this research, Muscle Stiffness Sensor was tested as the advanced HMI for walking assist system, and confirmed the adaptability by the experiment. As Muscle Stiffness Sensor can attain the muscle activity, user can interface with any device he want to control. Experimental result with Muscle Stiffness sonsor showed that user could easily control the walking assist system as his will, just by changing his muscle strength.

  • PDF

A Study on The Implementation of Stable and High-speed Humanoid Robot (ICCAS 2004)

  • Kim, Seung-Woo;Jung, Yong-Rae;Jang, Kyung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1440-1443
    • /
    • 2004
  • Most previous robots had used the wheels as means for movement. These structures were relatively simple and easy to control and this is why the method had been used until currently. However, there are many realistic problems to move from one place to another in human life, for instance, steps and edges. So we need to develop the two-legged walking humanoid robot. The 2-legged walking Robot system has been vigorously developed in so many corporations and academic circles of several countries. However, 2-legged walking Robot has been mostly studied in view of the static walk. We design a stable humanoid Robot which can walk in high-speed through the research of the dynamic walk in this paper. Especially, worldwide companies have been interested in developing humanoid robots for a long time to solve the before mentioned problems so that they can become more familiar with the human form. The most important thing, for the novel two-legged walk, is to create a stable and fast walking in two-legged robots. For realization of this movement, an optimal mechanical design of 12 DOFS, a distributed control and a parallel processing control are implemented in this paper. This paper proves that high speed and stable walking can be achieved, through experiments.

  • PDF

Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics (구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법)

  • Hong, Seok-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2017
  • This paper proposes a transformation method of the zero moment point (ZMP) and the center of mass (CoM) from one walking pattern to other patterns by considering the structure of a robot or walking situations in real time. In general, a humanoid robot has own structure characteristics like height and mass. The structure characteristics make the given CoM/ZMP walking pattern of one human or one humanoid robot to be difficult to apply to other robot directly. For this purpose, we analyze the characteristics of walking patterns according to the step length, duration of walking support phase and the CoM height by using the cart-table model as the simple humanoid robot model. A transformation equation is derived from the analyzation and it is verified with simulation.

Moving object detection for biped walking robot flatfrom (이족로봇 플랫폼을 위한 동체탐지)

  • Kang, Tae-Koo;Hwang, Sang-Hyun;Kim, Dong-Won;Park, Gui-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.570-572
    • /
    • 2006
  • This paper discusses the method of moving object detection for biped robot walking. Most researches on vision based object detection have mostly focused on fixed camera based algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since hired walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, method for moving object detection has been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. But these methods are not suitable to biped walking robot. So, we suggest the advanced method which is suitable to biped walking robot platform. For carrying out certain tasks, an object detecting system using modified optical flow algorithm by wireless vision camera is implemented in a biped walking robot.

  • PDF

Gait Implementation using a Kick Action for IWR-III Biped Walking Robot (이족보행로봇의 킥엑션을 이용한 보행 구현)

  • Jin, Kwang-Ho;Park, Chun-Ug;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.552-554
    • /
    • 1998
  • This paper deals with the gait generation of IWR-III using a kick action to have a walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. Balancing motion is analyzed by FDM during the walking, By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis, ZMP analysis and system stability is confirmed. Walking motion is visualized by 3D- graphic simulator. As a result, trunk ahead motion effect and impactless smooth walking is implemented by experiment. Finally walking with kick action is implemented the IWR-III system.

  • PDF

Development of Human-Sized Biped Robot of improvement in model (이족 보행로봇 개선모델의 개발)

  • 최형식;박용헌;정경식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.458-461
    • /
    • 1997
  • We have developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gar ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. For the purpose of autonomous walking and higher performance, we improved the previous developed BWR. We improved the motor drive efficiency, designed the ball screw actuator in a modular type, and simplified the electric wires. Through this modification, we achieved better performance in walking.

  • PDF

Design of a Flexible Robot Foot with Toes and Heel Joints (발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계)

  • Park, Jin-Hee;Kim, Hyun-Sul;Kwon, Sang-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

Walking Features Detection for Human Recognition

  • Viet, Nguyen Anh;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.787-795
    • /
    • 2008
  • Human recognition on camera is an interesting topic in computer vision. While fingerprint and face recognition have been become common, gait is considered as a new biometric feature for distance recognition. In this paper, we propose a gait recognition algorithm based on the knee angle, 2 feet distance, walking velocity and head direction of a person who appear in camera view on one gait cycle. The background subtraction method firstly use for binary moving object extraction and then base on it we continue detect the leg region, head region and get gait features (leg angle, leg swing amplitude). Another feature, walking speed, also can be detected after a gait cycle finished. And then, we compute the errors between calculated features and stored features for recognition. This method gives good results when we performed testing using indoor and outdoor landscape in both lateral, oblique view.

  • PDF

A Study of Human Gait Discrimination Using Multi-pressure Sensor (다중압력센서를 이용한 보행패턴 추정에 관한 연구)

  • Choi, Dae-Yeong;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.673-677
    • /
    • 2016
  • In this study, In order to measure foot pressure, it makes analyzing device using multi-pressure sensor. This device was limited frequency band to 5Hz by using low-pass filter and MCU was detected signal every milliseconds. After wearing the device, the result was confirmed by blue-tooth to measure wirelessly. Also, we propose an algorithm to obtain the walking pattern using a time table in each of the detected peak from the pressure sensor. Using the algorithm, right walking pattern and abnormal pattern was detected. The results can be reflected more individual walking patterns than when using a conventional methods and also, developed device was no restriction on the human activity.