• 제목/요약/키워드: Human Umbilical Vein Endothelial Cells

검색결과 248건 처리시간 0.031초

Inhibitory Effects of Rehmannia glutinosa Liboschitz on Endothelial Cell Proliferation

  • Lee, Sung-Jin;Lee, Hak-Kyo
    • 한국약용작물학회지
    • /
    • 제15권5호
    • /
    • pp.311-314
    • /
    • 2007
  • Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are the most important angiogenic molecules associated with tumor-induced neovascularization. This study was carried out to investigate inhibitory effect of extracts from root of Rehmannia glutinosa LIBOSCHITZ (Rehmannia Radix and Rehmannia Radix Preparata) on endothelial cell proliferation. The methanol extracts from the medicinal herb were fractionated into n-hexane, ethyl acetate, n-butanol and aqueous fractions. Among the four fractions, the n-butanol fraction from R. Radix on exhibited highly effective inhibition (${\approx}79%$ inhibition) on the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ and then ethyl acetate fraction from R. Radix (${\approx}45%$ inhibition) at the concentration of $100\;{\mu}g/ml$. The n-butanol fraction efficiently blocked the VEGF- and bFGF-induced HUVEC proliferation in a dose-dependent manner, but did not affect the growth of HT1080 human fibrosarcoma cells. The n-butanol fraction more efficiently blocked the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ and VEGF- and bFGF-induced human umbilical vein endothelial cell proliferation than the fraction from R. Radix Preparata. Our results suggest that Rehmannia Radix may be used as a candidate for developing anti-angiogenic agent.

Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

  • Jung, Hye-Jin;Im, Seung-Soon;Song, Dae-Kyu;Bae, Jae-Hoon
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.323-328
    • /
    • 2017
  • Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ($[Ca^{2+}]_i$) by releasing $Ca^{2+}$ from intracellular stores and via $Ca^{2+}$ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced $Ca^{2+}$ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated $Ca^{2+}$ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis.

Dealcoholized Korean Rice Wine (Makgeolli) Exerts Potent Anti-Tumor Effect in AGS Human Gastric Adenocarcinoma Cells and Tumor Xenograft Mice

  • Shin, Eun Ju;Kim, Sung Hee;Kim, Jae Ho;Ha, Jaeho;Hwang, Jin-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1485-1492
    • /
    • 2015
  • Makgeolli is a traditional wine in Korea and has been traditionally believed to exhibit health benefits. However, the inhibitory effect of dealcoholized makgeolli (MK) on cancer has never been investigated scientifically. In this study, MK exhibited an anti-angiogenic effect by inhibiting tube formation in human umbilical vein endothelial cells, without cytotoxicity. Treatment with MK reduced the proliferation of AGS human gastric adenocarcinoma cells in a dose-dependent manner and increased the sub-G1 population. Next, we evaluated whether MK could induce apoptosis in AGS cells by using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay or Annexin V method. Treatment with MK at 500 and 1,000 μg/ml increased the number of TUNEL-positive AGS cells. Under the same conditions, MK-treated (500 and 1,000 μg/ml) cells showed significant induction of early or late apoptosis, compared with untreated cells (no induction). In addition, MK also induced phosphatase and tensin homolog (PTEN) expression in AGS cells. However, p53 expression in AGS cells was not changed by MK treatment. Furthermore, MK at 500 mg/kg·d reduced the tumor size and volume in AGS tumor xenografts. Taken together, MK may be useful for the prevention of cancer cell growth.

비정상적인 세포증식이 유도된 혈관 내피세포에서 Protein Kinase C에 대한 활성 분석 (Activity of Protein Kinase C in Abnormally Proliferated Vascular Endothelial Cells)

  • 배용찬;박숙영;남수봉;문재술;최수종
    • Archives of Plastic Surgery
    • /
    • 제34권1호
    • /
    • pp.13-17
    • /
    • 2007
  • Purpose: To understand the pathogenesis of the disease that presents abnormally proliferated vascular endothelial cells, a model of DMH(1,2-dimethylhydrazine)-induced abnormal proliferation of HUVECs(Human Umbilical Vein Endothelial Cells) was made. We indirectly determined that Protein Kinase C(PKC) restricts the cellular proliferation and inhibits the manifestation of growth factor by using several inhibiting substances of the transmitter through our previous studies. Thereupon, we attempted to observe direct enzymatic activities of PKC and its correlation with the abnormal proliferation of vascular endothelial cells. Methods: $10^5$ HUVECs cells were applied to 6 individual well plates in three different groups; A control group cultured without treatment, a group concentrated with $0.75{\times}10^{-8}M$ DMH only, and a group treated with DMH & $5{\times}10^{-9}M$ Calphostin C, inhibitor of PKC. In analyzing the formation of intracellular PKC enzyme, protein separation was performed, and separated protein was quantitatively measured. PKC enzyme reaction was analyzed through Protein Kinase C Assay System (Promega, USA), and the results were analyzed according to Beer's law. Results: Enzymatic activity of PKC presented the highest in all reaction time of a group concentrated only with DMH, and the lowest in the control group. The group treated with DMH and the inhibitor revealed statistically lower enzymatic activity than group only with DMH in all reaction time, although higher than the control group. Conclusion: From the enzymatic aspect, most active and immediate reaction of the PKC was observed in the group concentrated with DMH only. The group treated with DMH & PKC inhibitor showed meaningful decrease. Accordingly, PKC holds a significant role in DMH-induced abnormal proliferation of vascular endothelial cells.

홍삼수용성추출물이 혈관신생에 미치는 영향 (Angiogenic Effects of Korea Red Ginseng Water Extract in the In Vitro and In Vivo Models)

  • 노의준;유승훈;김규민;이상현;윤용갑
    • 동의생리병리학회지
    • /
    • 제23권2호
    • /
    • pp.416-425
    • /
    • 2009
  • Angiogenesis is important for promoting cardiovascular disease, wound healing, and tissue regeneration. We here investigated the pharmacological effects of Korea red ginseng water extract (KRGE) on angiogenesis and its underlying signal mechanism. This study showed that KRGE increased in vitro proliferation, migration, and tube formation of human umbilical endothelial cells, as well as stimulated in vivo angiogenesis. KRGE-induced angiogenesis was accompanied by phosphorylation of ERK1/2, Akt, and endothelial nitric oxide synthase (eNOS) as well as an increase in NO production. Inhibition of PI3K activity by wortmannin completely inhibited KRGE-induced angiogenesis and phosphorylation of Akt, ERK1/2, and eNOS, indicating that PI3K/Akt activation is an upstream event of KRGE-mediated angiogenic pathway. The MEK inhibitor PD98059 completely blocked KRGE-induced angiogenesis and ERK phosphorylation without affecting Akt and eNOS activation. However, the eNOS inhibitor NMA effectively inhibited tube formation, but partially blocked proliferation and migration as well as ERK phosphorylation without altering Akt and eNOS activation, revealing that eNOS/NO pathway is in part involved in ERK1/2 activation. This study first demonstrated the critical involvement of both ERK1/2 and eNOS activation in KRGE-induced angiogenesis, which lie on downstream of PI3K/Akt. Thus, these results indicate that KRGE requires activation of both the PI3K/Akt-dependent ERK1/2 and eNOS signal pathways and their cross-talk for its full angiogenic activity.

디메틸히드라진(1,2-Dimethylhydrazine)으로 유도된 혈관내피세포의 비정상적인 증식에서 단백활성효소 시이(Protein Kinase C)의 역할; 동종효소 분석 (Role of Protein Kinase C in Abnormal Proliferation of Vascular Endothelial Cell induced by 1,2-Dimethylhydrazine; Analysis of Isoform)

  • 이진;배용찬;박숙영;문재술;남수봉
    • Archives of Plastic Surgery
    • /
    • 제34권1호
    • /
    • pp.8-12
    • /
    • 2007
  • Purpose: Protein tyrosine kinase(PTK), protein kinase C(PKC), oxidase, as a mediator, have been known to take a role in signal transduction pathway of angiogenesis. The authors confirmed that PKC is the most noticeable mediator for abnormal proliferation of vascular endothelial cells through in vitro study model using the inhibitors, targeting the formation of three co-enzymes. In this study, we would investigate which isoform of PKC play an important role in abnormal angiogenesis of vascular endothelial cell. Methods: In 96 well plates, $10^4$ HUVECs(human umbilical vein endothelial cells) were evenly distributed. Two groups were established; the control group without administration of DMH(1,2-dimethylhydrazine) and the DMH group with administration of $7.5{\times}10^{-9}M$ DMH. RNA was extracted from vascular endothelial cell of each group and expression of the PKC isoform was analyzed by RT-PCR(reverse transcriptase-polymerase chain reaction) method. Results: RT-PCR analysis showed that $PKC{\alpha}$, $-{\beta}I$, $-{\beta}II$, $-{\eta}$, $-{\mu}$ and $-{\iota}$ were expressed in vascular endothelial cells of each group. DMH incresed the expression of $PKC{\alpha}$ and $PKC{\mu}$, and decreased $PKC{\beta}I$, $PKC{\beta}II$ expression dominantly. Conclusion: Based on the result of this study, it was suggested that $PKC{\alpha}$ and $PKC{\mu}$ may have significant role in abnormal proliferation of vascular endothelial cell.

한국산 식물자원으로부터 신생혈관 억제제 검색 (I) (Screening of angiogenesis inhibitors from Korean plants (I))

  • 유영제;박진영;안인파;김영호;강종성;안병준;배기환
    • 생약학회지
    • /
    • 제31권3호
    • /
    • pp.320-324
    • /
    • 2000
  • Methanol extracts of 94 Korean plants were screened for angiogenesis inhibitors using the tube-like formation assay of HUVEC (Human Umbilical Vein Endothelial Cell) and evaluated for growth inhibitory activity on A549 cells, human lung cancer cells. Extracts of Euphorbia sieboldiana, Adonis amurensis, and Anthriscus sylvestris showed antiangiogenic and growth inhibitory activity at $50\;{mu}g/ml$. Aristolochia manshuriens and Styrax obassia expressed antiangiogenic activity without growth inhibitory action.

  • PDF

In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells

  • Kim, Ji-Hye;Kim, Gee-Hye;Kim, Jae-Won;Pyeon, Hee Jang;Lee, Jae Cheoun;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.790-796
    • /
    • 2016
  • Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, ${\alpha}$-smooth muscle actin (SMA), platelet-derived growth factor receptor beta ($PDGFR{\beta}$), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of1VEGF, SDF-$1{\alpha}$, and $PDGFR{\beta}$ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.

Sphingosine 1-phosphate induces vesicular endothelial growth factor expression in endothelial cells

  • Heo, Kyun;Park, Kyung-A;Kim, Yun-Hee;Kim, Sun-Hee;Oh, Yong-Seok;Kim, In-Hoo;Ryu, Sung-Ho;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.685-690
    • /
    • 2009
  • Angiogenesis is essential for tumor growth and vascular endothelial cell growth factor (VEGF) plays a key role in this process. Conversely, sphingosine 1-phosphate (S1P) is a biologically active sphingolipid known to play a key role in cancer progression by regulating endothelial cell proliferation and migration. In this study, the authors found that S1P increases the level of VEGF mRNA in human umbilical vein endothelial cells (HUVECs) and immortalized HUVECs (iHUVECs). Additionally, S1P was found to increase VEGF promoter activity in MS-1 mouse pancreatic islet endothelial cells. Furthermore, a pharmacological inhibitory study revealed that $G_{\alpha i/o}$-mediated phospholipase C, Akt, Erk, and p38 MAPK signaling are involved in this S1P-induced expression of VEGF. A component of AP1 transcription factor is important for S1P-induced VEGF expression. Taken together, these findings suggest that S1P enhances endothelial cell proliferation and migrat ion by upregulating the expression of VEGF mRNA.

혈관내피세포에서 TNF-α로 유도되는 혈관염증에 대한 쏙(Upogebia major) 효소가수분해물의 억제 효과 (Inhibition Effect of Enzymatic Hydrolysate from Japanese Mud Shrimp Upogebia major on TNF-α-induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells (HUVECs))

  • 김소연;양지은;송재희;맹상현;이지현;윤나영
    • 한국수산과학회지
    • /
    • 제51권2호
    • /
    • pp.127-134
    • /
    • 2018
  • Arteriosclerosis is the major cause of coronary artery and cerebrovascular disease, which are leading causes of death. Pro-inflammatory cytokines induce injury to vascular endothelial cells by increasing cell adhesion molecules, leading to vascular inflammation, a major risk factor for the development of arteriosclerosis. In the current study, we investigated the inhibitory effect of enzymatic hydrolysate from Japanese mud shrimp Upogebia major on the inflammation of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$)-stimulated human umbilical vein endothelial cells (HUVECs). We first evaluated the antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of eight U. major enzymatic hydrolysates: alcalase, papain, ${\alpha}$-chymotrypsin (${\alpha}-Chy$), trypsin, pepsin, neutrase, protamex and flavourzyme. Of these, ${\alpha}-Chy$ exhibited potent antioxidant and ACE inhibitory activities. The ${\alpha}-Chy$ hydrolysate was fractionated by two ultrafiltration membranes of 3 and 10 kDa. The ${\alpha}-Chy$ hydrolysate of U. major and its molecular weight cut-off fractions resulted in a significant reduction in NO production and a decrease in cell adhesion molecules [vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and endothelial-selectin (E-selectin)] and pro-inflammatory cytokines [interleukin-6 (IL-6), interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1)] in $TNF-{\alpha}$-stimulated HUVECs. These results suggest that enzymatic hydrolysate from U. major can be used in the control and prevention of vascular inflammation and arteriosclerosis.