• Title/Summary/Keyword: Human Umbilical Cord Blood

Search Result 54, Processing Time 0.038 seconds

Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

  • Lee, Min Ju;Yoon, Tae Gyoon;Kang, Moonkyu;Kim, Hyun Jeong;Kang, Kyung Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.

Bio-inert Surface of Pluronic-immobilized Flask for Preservation of Hematopoietic Stem Cells

  • Higuchi, Akon;Aoki, Nobuo;Gomei, Yumiko;Matsuoka, Yuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.267-267
    • /
    • 2006
  • Human umbilical cord blood was stored at $4^{\circ}C$ in the Pluronic-immobilized flask as well as commercially available bio-inert flasks, and flow cytometric analysis of surface markers was performed on hematopoietic stem cells after cultivation. The number of cells expressing $CD34^{+}$ in umbilical cord blood on the Pluronic-immobilized flask was extremely higher than those obtained using other flasks. It is concluded that the flexible and hydrophilic segments of Pluronic conjugated on the flask surface are the reason for the effective preservation of hematopoietic stem cells in the Pluronic-immobilized flask.

  • PDF

ENDOTHELIAL PROGENITOR CELLS AND MESENCHYMAL STEM CELLS FROM HUMAN CORD BLOOD (제대혈 내피기원세포 및 간엽줄기세포의 분화에 대한 연구)

  • Kim, Eun-Seok;Kim, Hyun-Ok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Stem cell therapy using mesenchymal stem cells(MSCs) transplantation have been paid attention because of their powerful proliferation and pluripotent differentiating ability. Although umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, the presence of mesenchymal stem cells (MSCs) in UCB has been controversial and it remains to be validated. In this study, we examine the presence of MSCs in UCB harvests and the prevalence of them is compared to that of endothelial progenitor cells. For this, CD34+ and CD34- cells were isolated and cultured under the endothelial cell growth medium and mesenchymal stem cell growth medium respectively. The present study showed that ESC-like cells could be isolated and expanded from preterm UCBs but were not acquired efficiently from full-terms. They expressed CD14-, CD34-, CD45-, CD29+, CD44+, CD105+ cell surface marker and could differentiate into adipogenic and osteogenic lineages. Our results suggest that MSCs are fewer in full-term UCB compared to endothelial progenitor cells.

Expression of HLA and Mixed Lymphocyte Reaction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood (제대혈 유래 중간엽줄기세포에서 HLA의 발현과 Mixed Lymphocyte Reaction)

  • Lee, Hyo-Jong;kang, Sun-Young;Park, Se-Jin;Lee, Seung-Yong;Lee, Hee-Chun;Koh, Phil-Ok;Park, Ji-Kwon;Paik, Won-Young;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.399-402
    • /
    • 2011
  • In recent years, the mesenchymal stem cells (MSC) derived from various tissues have been widely tested for developing cell therapies, tissue repair and transplantation. Although there has been much interest in the immunomodulatory properties of MSC and their immunologic reactions following autologous, allogeneic and xenogenic transplantation of MSC in vivo, up to date, the expression of immunogenic markers, such as class I and II human leukocyte antigens (HLA), after differentiation of human umbilical cord blood (hUCB)-derived MSC has been poorly investigated and require extensive in vitro and in vivo testing. In this experiment, the expression of the HLA-ABC and HLA-DR on hUCB-derived MSC have been tested by immunocytochemical staining. The undifferentiated MSC were moderately stained for HLA-ABC but very weakly for HLA-DR. In order to investigate the inhibitory effect of allogeneic lymphocytes on proliferation of MSC, the MSC were cultured in the presence or absence of peripheral allogeneic lymphocytes stimulated with concanavalin A. The allogeneic lymphocytes did not significantly inhibit MSC proliferation. We conclude that hUCB-MSC expressed moderately class I HLA antigen while almost negatively class II HLA antigen. The MSC have an immunomodulatory effect which can suppress the allogeneic response of lymphocytes. These in vitro data suggest that allogeneic MSC derived from cord blood can be useful candidate for allogeneic cell therapy and transplantation without a major risk of rejection.

Nanosphere Form of Curcumin Stimulates the Migration of Human Umbilical Cord Blood Derived Mesenchymal Stem Cells

  • Kim, Do-Wan;Kim, Ju Ha;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.221-221
    • /
    • 2020
  • Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases. In the present study, we found the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) during the wound closure. We found that the efficacy of hUCB-MSCs migration induced by CN was 1000-fold higher than that of curcumin powder. CN significantly increased the motility of hUCB-MSCs by activating c-Src, which is responsible for the phosphorylation of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). CN induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhances wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.

  • PDF

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

A pilot study of neuroprotection with umbilical cord blood cell transplantation for preterm very low birth weight infants (극소 저 출생체중 미숙아에서 자가 제대혈 줄기세포 이식을 통한 신경 손상 방지 연구)

  • Chae, Kyu Young;Lee, Kyu Hyung;Eun, So Hee;Choi, Byung Min;Eun, Baik-Lin;Kang, Hoon-Chul;Chey, Myung Jae;Kim, Nam Keun;Oh, Doyeun
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.9
    • /
    • pp.882-890
    • /
    • 2007
  • Purpose : Preterm very low birth weight infant have high rate of adverse neurodevelopmental sequale. Recently, there have been lots of reports that human umbilical cord blood transplantation ameliorates functional deficits in animal models as hypoxic ischemic injury. This pilot study was undertaken to determine the clinical efficacy and safety of autologous umbilical cord blood cell transplantation for preventing neurodevelopmental sequale in perterm VLBW. Methods : Subjects were 26 preterm infants whose birth weight are less than 1,500 g and delivered under the intrauterine period 34 weeks. Autologous umbilical mononuclear cells (about $5.87{\times}10^7/kg$) were injected to neonate via the umbilical vein on the postnatal 24-48 hour. The therapeutic efficacy was assessed by numbers of nucleated RBC, urinary uric acid/creatinine ratio, concentration of neuron specific enolase (NSE), interleukin 6 (IL6), interleukin-$1{\beta}$ ($IL-1{\beta}$), and glial cell derived neurotrophic factor (GDNF) in serum and cerebrospinal fluid on day 1 and 7. Results : There were no significant differences in the numbers of the nucleated RBC, urinary uric acid/creatinine ratio, concentration of creatine kinase between the transplanted infants and controls. But the nucleated RBC is more likely to be rapidly discharged in the transplanted group. In the transplanted group, the concentrations of IL6, $IL-1{\beta}$, and GDNF were no significant difference between day 1 and 7, although GDNF seemed to be elevated. Serum NSE concentration was significantly elevated after transplantation, but not in CSF. Conclusion : It is suggested that autologous umbilical cord blood transplantation in preterm very low birth weight infant is safe to apply clinical practice. Long term follow up study should be needed to evaluate the potential therapeutic effect of umbilical cord blood transplantation for neuroprotection.

Proliferation, Apoptosis, and Telomerase Activity in Human Cord Blood CD34+ Cells Cultured with Combinations of Various Cytokines

  • Ahn, Myung-Ju;Lee, Hye-Sook;Jang, Mi-Yune;Choi, Jung-Hye;Lee, Young-Yeul;Park, Hyung-Bae;Lee, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.422-428
    • /
    • 2003
  • Umbilical cord blood (UCB), a rich source of hematopoietic stem/progenitor cells, has been proposed as an alternative to bone marrow and peripheral blood for transplantation treatment. Ex vivo expansion of cord blood stem cells could make the use of cord blood transplant feasible even for adult patients. However, the optimal cytokine cocktail for expansion of stem cells is yet to be established. This study compares proliferation, apoptosis, and telomerase activities in human cord blood stem cells cultured ex vivo with FLT3 ligand (FL)/thrombopoietin (TPO) or FL/TPO/stem cell factor (SCF), with a view to determine optimal combination of cytokines. CD34+ cells were cultured in DMEM containing either FL (50 ng/ml) and TPO (10 ng/ml) (FT group) or FL (50 ng/ml), TPO (10 ng/ml) and SCF (50 ng/ml) (FTS group). The cell proliferation rate was ten times higher in the FTS group. Although cells cultured with the two different combinations of cytokines were maintained for a long term (up to 8 weeks), a large number of cells underwent differentiation during this period. Cells cultured in FTS displayed lower levels of apoptosis compared to those of the FT group during the Initial 7 days of culture. The CD34+ fraction in both groups was markedly decreased to $21-30\%$ , and only $5-6\%$ was detected at 14 days of culture. Telomerase activity detected in human CD34+ cord blood at low levels was upregulated during the early phase of culture and decreased to baseline levels in the later phase. The telomerase activity of cord blood cultured in FT was lower than that of the FTS group. Our results suggest that, on adding stem cell factors to the FT cytokines, cultured CD34+ cord blood cells display a greater degree of cell proliferation and decreased apoptosis. However, during CD34+ cord blood cell culture, a Barge number of cells undergo differentiation, indicating that more potent novel cytokines or new culture conditioning methods should be developed to maintain their ability to engraft and sustain long-term hematopoiesis.

Hepatocyte Growth Factor is the Key Cytokine in Stimulating Potential Stem Cells in the Cord Blood into Hepatic Lineage Cells

  • Ryu, Kyung-Ha;Cho, Su-Jin;Woo, So-Youn;Seoh, Ju-Young;Jung, Yun-Jae;Han, Ho-Seong
    • IMMUNE NETWORK
    • /
    • v.7 no.3
    • /
    • pp.117-123
    • /
    • 2007
  • Background: This study was designed to investigate the role of the hepatocyte growth factor (HGF) with regards to differentiation of somatic stem cells originating from the human umbilical cord blood (UCB) into hepatic lineage cells in vitro culture system. Methods: Mononuclear cells from UCB were cultured with and without HGF based on the fibroblast growth factor (FGF)-1, FGF-2, and stem cell factor. The cultured cells were confirmed by immunofluorescent staining analysis with albumin (ALB), cytokeratin-19 (CK-19), and proliferating cell nuclear antigen (PCNA) MoAb. ALB and CK-18 mRNA were also evaluated by reverse transcription-polymerase chain reaction. In order to observe changes in proliferating capacity with respect to the cultured period, CFSE with affinity to proliferating cells were tagged and later underwent flow cytometry. Results: In the HGF-treated group, cultured cells had a large oval shaped appearance with adherent, but easily detachable characteristics. In the HGF-non treated group, these cells were spindle-shaped with strong adherent characteristics. Expressions of ALB and CK-19 were evident in HGF-treated group compared to non-expression of those in to HGF-non treated group. Dual immunostaining analysis of the ALB producing cells showed presence of PCNA in their nuclei, and ALB and CK-18 mRNA were detected on the 21st day of cultured cells in the HGF-treated group. Conclusion: Our findings suggest that HGF has a pivotal role in differentiating somatic stem cells of human UCB into hepatic lineage cells in vitro.