• Title/Summary/Keyword: Human Tracking

Search Result 652, Processing Time 0.024 seconds

Automatic identification and analysis of multi-object cattle rumination based on computer vision

  • Yueming Wang;Tiantian Chen;Baoshan Li;Qi Li
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.519-534
    • /
    • 2023
  • Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.

A Study on the Detection of Marine Debris in Collection Blind Spots using Drones and a Method for Matching Latitude and Longitude (드론을 활용한 수거사각지대 해양쓰레기 탐지 및 위경도 매칭 방법에 관한 연구)

  • Sang-Hyun Ha;Eun-Sung Choi;Ji Yeon Kim;Sung-Hoon Oh;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2023
  • Marine debris not only affects the survival of marine life, water pollution, and scenery but also has secondary effects on economic loss and human health. While research on underwater and surface debris is actively ongoing, solutions to marine debris in hard-to-reach blind spots are being developed slowly. To address this problem, we utilize drones to detect and track marine debris in blind spots such as tetrapods. The detected debris is then visualized by calculating its location coordinates using the drone's GPS, altitude, and heading values. The proposed method of using drones for detecting marine debris and matching it with longitude and latitude coordinates provides an effective solution to the problem of marine debris in blind spots.

Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors (시변 분절-관절 벡터를 통한 상대위치 추정시 변형관련 변수의 선정이 추정 정확도에 미치는 영향)

  • Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.156-162
    • /
    • 2022
  • This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.

Home Range Size and Habitat Environment Related to the Parturition of Roe Deer at Warm-Temperate Forest in Jeju Island Using GPS-CDMA Based Wildlife Tracking System (GPS와 CDMA를 이용한 난대림의 출산 전후 암노루 행동권 및 서식환경 조사)

  • Kim, Eun-Mi;Kwon, Jin-O;Kang, Chang-Wan;Song, Kuk-Man;Min, Dong-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • A research program for the roe deer (Capreolus pygargus) has been set up at the Jeju Experimental Forest of Warm-temperate and Subtropical Forest Research Center in Jeju Island. To explore the home range size and habitat environment, 3 males and 3 females have been captured and released with GPS-CDMA based telemetry since 24th April 2012. Among them 2 females were captured at Hannam Forest of Seoguipo, were pregnant and monitored by the tracking system. There are significantly different patterns in behavior around the parturition. After parturition they show recurrence behavior toward one point in the forest, while they have irregular patterns in moving before. To calculate the home range size, the MCP (minimum convex polygon) and Kernel Method are applied through the extension of ESRI ArcView GIS 3.2a. The pregnant female captured 9th May 2012 has the size of MCP=67ha and Kernel 95%=0.5ha and the pregnant female captured 12th July 2012 has the size of MCP=82ha and Kernel 95%=0.9ha. Although a fawn could move immediately just after the birth likely others to avoid any risks, they stay at very narrow space significantly, and the size become wider when more time goes by. Furthermore, they mainly have a home range away from human activity area such as forest tracking roads. The habitat environment for the parturition is summarized as 40years old cryptomeria forests with new sprouting shrubs for foods, which are the controlled forest through the thinning and removing shrubs 2 years ago. This means that forest works could cause positive results for the parturition and survival of young. The period of parturition is earlier than highland in Jeju Island, the size of home range is narrower than other countries, and the habitat environment of the shelter for a fawn is similar to previous research in other countries.

Serial MR Imaging of Magnetically Labeled Humen Umbilical Vein Endothelial Cells in Acute Renal Failure Rat Model (급성 신부전 쥐 모델에서 자기 표지된 인간 제대정맥 내피세포의 연속 자기공명영상)

  • Lee, Sun Joo;Lee, Sang Yong;Kang, Kyung Pyo;Kim, Won;Park, Sung Kwang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.181-191
    • /
    • 2013
  • Purpose : To evaluate the usefulness of in vivo magnetic resonance (MR) imaging for tracking intravenously injected superparamagnetic iron oxide (SPIO)-labeled human umbilical vein endothelial cells (HUVECs) in an acute renal failure (ARF) rat model. Materials and Methods: HUVECs were labeled with SPIO and poly-L-lysine (PLL) complex. Relaxation rates at 1.5-T MR, cell viability, and labeling stability were assessed. HUVECs were injected into the tail vein of ARF rats (labeled cells in 10 rats, unlabeled cells in 2 rats). Follow-up serial $T2^*$-weighted gradient-echo MR imaging was performed at 1, 3, 5 and 7 days after injection, and the MR findings were compared with histologic findings. Results: There was an average of $98.4{\pm}2.4%$ Prussian blue stain-positive cells after labeling with SPIOPLL complex. Relaxation rates ($R2^*$) of all cultured HUVECs at day 3 and 5 were not markedly decreased compared with that at day 1. The stability of SPIO in HUVECs was maintained during the proliferation of HUVECs in culture media. In the presence of left unilateral renal artery ischemia, $T2^*$-weighted MR imaging performed 1 day after the intravenous injection of labeled HUVECs revealed a significant signal intensity (SI) loss exclusively in the left renal outer medulla regions, but not in the right kidney. The MR imaging findings at days 3, 5 and 7 after intravenous injection of HUVECs showed a SI loss in the outer medulla regions of the ischemically injured kidney, but the SI progressively recovered with time and the right kidney did not have a significant change in SI in the same period. Upon histologic analysis, the SI loss on MR images was correspondent to the presence of Prussian blue stained cells, primarily in the renal outer medulla. Conclusion: MR imaging appears to be useful for in vivo monitoring of intravenously injected SPIO-labeled HUVECs in an ischemically injured rat kidney.

$In$ $vitro$ MRI and Characterization of Rat Mesenchymal Stem Cells Transduced with Ferritin as MR Reporter Gene (페리틴 리포터 유전자를 발현하는 백서 중간엽 줄기세포의 특성과 자기공명영상 연구)

  • Shin, Cheong-Il;Lee, Whal;Woo, Ji-Su;Park, Eun-Ah;Kim, Pan-Ki;Song, Hyun-Bok;Kim, Hoe-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Purpose : This study was performed to evaluate the characteristics of rat mesenchymal stem cells (RMSCs) transduced with human ferritin gene and investigate $in$ $vitro$ MRI detectability of ferritin-transduced RMSCs. Materials and Methods: The RMSCs expressing both myc-tagged human ferritin heavy chain subunit (myc-FTH) and green fluorescence protein (GFP) were transduced with lentiviurs. Transduced cells were sorted by GFP expression using a fluorescence-activated cell sorter. Myc-FTH and GFP expression in transduced cells were detected by immunofluorescence staining. The cell proliferative ability and viability were assessed by MTT assay. The RMSC surface markers (CD29+/CD45-) were analyzed by flow cytometry. The intracellular iron amount was measured spectrophotometically and the presence of ferritin-iron accumulation was detected by Prussian blue staining. $In$ $vitro$ magnetic resonance imaging (MRI) study of cell phantoms was done on 9.4 T MR scanner to evaluate the feasibility of imaging the ferritin-transduced RMSCs. Results: The myc-FTH and GFP genes were stably transduced into RMSCs. No significant differences were observed in terms of biologic properties in transduced RMSCs compared with non-transduced RMSCs. Ferritin-transduced RMSCs exhibited increased iron accumulation ability and showed significantly lower $T_2$ relaxation time than non-transduced RMSCs. Conclusion: Ferritin gene as MR reporter gene could be used for non-invasive tracking and visualization of therapeutic mesenchymal stem cells by MRI.

Wearable antenna for Body area Network

  • Lim, Eng Gee;Wang, Zhao;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Wireless Body Area Networks (WBAN) have been made possible by the emergence of small and lightweight wireless systems such as Bluetooth, enabled devices and PDAs. Antennas are an essential part of any WBAN system and due to various technical requirements and physical constraints, careful consideration of their design and deployment is needed. This paper is proposing on the design of wearable antenna as parts of clothing to serve communications functions, such as tracking and navigation in health care applications. The substrates of the wearable antennas will be made from textile materials and since it is wearable, it should have a small size, be light weight, low maintenance, and unobtrusive. This proposed paper will also investigate the influence of different parameters for wearable antenna including types of textile/substrate to ensure that the antenna design satisfies WBAN requirements. The characteristics and behavior of the antenna need to adhere to specifications set by wireless standards and system technology requirements. This means that the transmitting and receiving frequency bands of the various units need to be chosen accordingly. Since there are restrictions on the level of power to which the human body can be exposed to, the antenna as well as other RF system components must be designed to meet these restrictions. Antenna gain, which directly affects power transmitted, is a critical parameter in ensuring power levels fall within the safety guidelines and so will be of primary importance in the design. The electromagnetic interaction between WBAN antennas and devices and the human body will also be explored.

  • PDF

Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells (렌티바이러스와 아데노바이러스를 통하여 쥐의 중간엽줄기세포에 사람 나트륨/옥소 공동수송체 유전자를 전달하였을 때의 발현성능 비교)

  • Park, So-Yeon;Kim, Sung-Jin;Lee, Won-Woo;Lee, Heui-Ran;Kim, Hyun-Joo;Chung, June-Key;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.394-400
    • /
    • 2008
  • Purpose: Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Materials and Methods: Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was $19.1{\pm}4.7%$, $54.0{\pm}6.4%$, $85.7{\pm}8.7%$, and $98.4{\pm}1.3%$ at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and 1-125 uptake. Results: Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro 1-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC ($29,704{\pm}6,659\; picomole/10^6\;cells$) was greater than that in adeno-hNIS-rMSC at MOI 100 ($6,168{\pm}2,134\;picomole/10^6\;cells$). Conclusion: Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.