• 제목/요약/키워드: Human Postural Control

검색결과 36건 처리시간 0.022초

선형외란에 대응하는 인체의 자세응답 해석 (Human Postural Response to Linear Perturbation)

  • 김세영;박수경
    • 대한기계학회논문집A
    • /
    • 제33권1호
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.

자세의 유지성 및 안정성에 관한 해석 (Identification of postural steadiness and stability: state-of-the-art)

  • 정병용;박경수
    • 대한인간공학회지
    • /
    • 제15권1호
    • /
    • pp.53-67
    • /
    • 1996
  • Since Romberg's test in 1953, the analysis of postural sway during upright stance has been widely used as a tool for evaluating balance and disorders of the postural control system. This review describes the methods that have been used to evaluste the static and dynamic performance of the postural control system. Various identification methods of postural control system based on standing balance are discussed and measures of postural sway are described. The application areas of standign balance research, with an emphasis on postural control evaluations, are also briefly described. This review can be used to gain an understanding of the dynamics of human standing balance.

  • PDF

시각 자극에 의한 신체자세 균형제어에 관한 연구 (Human Postural Balance Control by Visual Stimulation)

  • 김현석;김동욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권4호
    • /
    • pp.417-426
    • /
    • 1996
  • In this paper, we report the effects of visual stimulation patterns in the postural balance control. We used the motor-driven cloth panel and HMD(Head Mounted Display) to evaluate the effect of visual stimulation patterns in the postural balance control. We also investigated the usefulness of HMD in the postural balance rehabilitation training system from the view of reducing the scale of experimental system. Our results showed that a vertical-strip visual pattern was more effective than the others in the postural balance control. It was also indicated that HMD might be applied to clinical use as a new postural balance training system.

  • PDF

Analysis of Postural Stability During Continuous External Perturbations

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.21-29
    • /
    • 2013
  • The functional behaviors of human standing postural control were investigated when they were exposed to long-term horizontal vibration in the sagittal plane. For complexity of human postural control, a useful alternative method that has been based on a black-box approach was taken; that is, where the feedback mechanism was lumped into a single element. A motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced continuous anterior/posterior (AP) motion. The data were analyzed both in the time and frequency domain. The cross-correlation and coherency functions were estimated. Subjects behaved as a non-rigid pendulum with a mass and a spring throughout the whole period of the platform motion, as consistent with the plan chosen for this study.

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

연령와 이중과제 수행이 자세제어에 미치는 영향 (The Effect of Age and Dual Task to Human Postural Control)

  • 신성훈;장대근;장재근;박승훈
    • 한국운동역학회지
    • /
    • 제23권2호
    • /
    • pp.169-177
    • /
    • 2013
  • The purpose of this study is to investigate the effect of aging and dual tasking to the postural control during quiet standing. It was hypothesized that the center of pressure (COP) dynamics would be differently affected by aging and characteristics of the task. Total 60 adults (35 young adults and 25 older adults) participated in this study. They conducted two different standing tasks (dual vs. Nondual) twice in a random order. Variability, complexity, coupling and symmetric index from the left, right and overall COPs were measured by various parameters in nonlinear, linear and frequency analyses methods. Results demonstrated that older adults had worse performance in postural control with decreased complexity in overall sway movement, and increased coupling between left and right limb COP movement, even though there was no significant difference in symmetric index. These tendencies are generally clearer in nonlinear measures at the dual task condition. Results implied that older adults had compensatory strategy in dual tasking which results in simple and combined postural movement patterns.

A New Training System for Improving Postural Balance Using a Tilting Bed

  • Yu, Chang-Ho;Kwon, Tae-Kyu;Ryu, Mun-Ho;Kim, Nam-Gyun
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.117-126
    • /
    • 2007
  • In this paper, we propose an early rehabilitation training system for the improvement of postural balance with multi-modality on a tilting bed. The integration of the visual, somatosensory and vestibular functions is significant to for maintaining the postural control of the human body. However, conventional rehabilitation systems do not provide multi-modality to trainees. We analyzed the characterization of postural control at different tilt angles of an early rehabilitation training system, which consists of a tilting bed, a visual feedback, a computer interface, a computer, and a force plate. The software that we developed for the system consists of the training programs and the analysis programs. To evaluate the characterization of postural control, we conducted the first evaluation before the beginning of the training. In the following four weeks, 12 healthy young and 5 healthy elderly subjects were trained to improve postural control using the training programs with the tilting bed. After four weeks of training, we conducted the second evaluation. The analysis programs assess (center of pressure) COP moving time, COP maintaining time, and mean absolute deviation of the trace before and after training at different tilt angles on the bed. After 4 weeks, the COP moving time was reduced, the COP maintaining time was lengthened, and the mean absolute deviation of the trace was lowered through the repeated use of vertical, horizontal, dynamic circle movement training programs. These results show that this system improves postural balance and could be applied to clinical use as an effective training system.

안정판과 불안정판에서 자세 균형 조절에 대한 진동자극의 영향 (Effects of Vibratory Stimulus on Postural Balance Control during Standing on a Stable and an Unstable Support)

  • 유미;은혜인;김동욱;권대규;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권5호
    • /
    • pp.647-656
    • /
    • 2007
  • The purpose of this study was to analyze the effects of vibratory stimulus as somatosensory inputs on the postural control in human standing. To study these effects, the center of pressure(COP) was observed while subjects were standing on a stable and an unstable support with co-stimulated mechanical vibrations to flexor ankle muscles(tibialis anterior tendon, achilles tendon) and two plantar zones on both foot. The COP sway measurement was repeated twice in four conditions: (1) with visual cue and vibration, (2) without visual cue and vibration, (3) with visual cue and without vibration, (4) without visual cue and with vibration. The calculated parameters were the COP sway area and the distance, the median frequency and the spectral energy of COP sway in three intervals $0.1{\sim}0.3,\;0.3{\sim}1,\;1{\sim}3Hz$. The results showed that vibratory stimulus affect postural stability. The reduction rate of the COP sway with vibratory stimulus were higher on the unstable support because the effect of postural stability increases when afferent nervous flow is more activated by vibration on unstable support. If unclear visual or vibratory information is received, one type of information is compared with the other type of sensory information. Then the input balance between visual and vibratory information is corrected to maintain postural stability. These findings are important for the rehabilitation system of postural balance control and the use of vibratory information.

Effects of Somatosensory Training on Upper Limb for Postural Control and Locomotion in Hemiplegic Stroke with Unilateral Neglect

  • Song, Bo-Kyoung
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.332-338
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the effect of postural control and locomotion on improvement of two point discrimination (TPD), stereognosis (ST) through somatosensory training (SST) on the upper limb (UL). Methods: The subjects were 20 hemiplegia patients who have problems with unilateral neglect after stroke. The patients were divided into two groups, the experimental group (EG) and the control group (CG). In the EG, SST for TPD, ST was performed 18 times, three times a week for six weeks, together with physical therapy (PT) and occupational therapy (OT). In the CG conventional PT and OT without SST was performed for six weeks. Several assessment tools were used in comparison of groups; two point discrimination test (TPDT) on forearm (F), thenar (T), hypothenar (TH), thumb tip (TH-T), index finger tip (IN-T), stereognosis test (ST), postural assessment scale for stroke (PASS), and clinical test of sensory interaction on balance (CTSIB) and timed up and go test (TUG). Results: In the CG, conventional PT and OT resulted in statistically improved TPDT (F), ST, PASS, and TUG. In the EG, SST resulted in statistically improved TPDT (F, T, HT, TH-T, IN-T), ST, PASS, and TUG. TPDT-T, ST, and CTSIB with length of displacement with eye open (LDEO) also showed significant improvement between the groups. Conclusion: In both groups TPDT ST, PASS and TUG, and SST had effects on the UL and TPDT, ST and static postural control had greater effects compared with the PG. Therefore, we could assume that TPD and ST are very important in performing human activities including postural control and locomotion.