• Title/Summary/Keyword: Human Obesity DNA

Search Result 14, Processing Time 0.028 seconds

Single-Strand Conformation Polymorphism Analysis by Microchip Electrophoresis for the Rapid Detection of Point Mutation in Human Obesity Gene

  • Kang, Seong-Ho;Jang, Soo-Young;Park, Sang-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1346-1352
    • /
    • 2006
  • We describe an effective method of microchip electrophoresis (ME) based on single strand conformation poly-morphism (SSCP) analysis to rapidly detect the point mutation, Leu72Met, in a human obesity gene. The 207-bp dsDNA in the Leu72Met region, an estimate of the child obesity DNA mutant, was amplified by polymerase chain reaction (PCR) and submitted to a conventional glass microchip analysis with a sieving matrix of 1.75% poly(vinylpyrrolidone) (Mr 1 300 000), 1.0% poly(ethyleneoxide) (Mr 600 000) and 5.0% w/w glycerol. When combined with base stacking (BS) with hydroxide ions, the SSCP-ME provided rapid analysis as well as sensitive detection. The detection sensitivity was effectively enhanced in the OH- concentration range of 0.01-0.025 M NaOH. The sensitivity and speed of this ME-based SSCP methodology for the rapid detection of Leu72Met point mutations makes this an attractive method for diagnosing childhood obesity in a clinical diagnostic laboratory.

Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice

  • Yoon, AhRam;Tammen, Stephanie A.;Park, Soyoung;Han, Sung Nim;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: A high-fat diet (HFD) induces obesity, which is a major risk factor for cardiovascular disease and cancer, while a calorie-restricted diet can extend life span by reducing the risk of these diseases. It is known that health effects of diet are partially conveyed through epigenetic mechanism including DNA methylation. In this study, we investigated the genome-wide hepatic DNA methylation to identify the epigenetic effects of HFD-induced obesity. MATERIALS AND METHODS: Seven-week-old male C57BL/6 mice were fed control diet (CD), calorie-restricted control diet (CRCD), or HFD for 16 weeks (after one week of acclimation to the control diet). Food intake, body weight, and liver weight were measured. Hepatic triacylglycerol and cholesterol levels were determined using enzymatic colorimetric methods. Changes in genome-wide DNA methylation were determined by a DNA methylation microarray method combined with methylated DNA immunoprecipitation. The level of transcription of individual genes was measured by real-time PCR. RESULTS: The DNA methylation statuses of genes in biological networks related to lipid metabolism and hepatic steatosis were influenced by HFD-induced obesity. In HFD group, a proinflammatory Casp1 (Caspase 1) gene had hypomethylated CpG sites at the 1.5-kb upstream region of its transcription start site (TSS), and its mRNA level was higher compared with that in CD group. Additionally, an energy metabolism-associated gene Ndufb9 (NADH dehydrogenase 1 beta subcomplex 9) in HFD group had hypermethylated CpG sites at the 2.6-kb downstream region of its TSS, and its mRNA level was lower compared with that in CRCD group. CONCLUSIONS: HFD alters DNA methylation profiles in genes associated with liver lipid metabolism and hepatic steatosis. The methylation statuses of Casp1 and Ndufb9 were particularly influenced by the HFD. The expression of these genes in HFD differed significantly compared with CD and CRCD, respectively, suggesting that the expressions of Casp1 and Ndufb9 in liver were regulated by their methylation statuses.

A review of epigenetic nutrients on chronic inflammation associated with sarcopenic obesity in the elderly (노인의 저근육형 비만에 따른 만성염증 억제를 위한 후생유전학적 영양에 관한 고찰)

  • No, Jae Kyung
    • Korean Journal of Human Ecology
    • /
    • v.22 no.1
    • /
    • pp.181-188
    • /
    • 2013
  • 노인에게서 두드러지게 나타나고 있는 저근육형 비만은 근육감소를 동반한 체지방의 증가로 신체상의 뚜렷한 체성분의 변화를 야기 시킨다. 이때 골감소증을 동반하여 신체기능의 감소 및 골절장애 그리고 대사성 관련 질환의 위험도가 올라가는 것으로 보고되고 있다. 노화로 인한 체성분의 변화는 단순한 저근육형일 경우와 비만일 때 보다 급격히 증가된 복부내장 지방조직에서 분비되는 염증성 사이토카인, C-반응성 단백질(CRP), 인터루킨(IL)-6, IL-8 및 종양 괴사 인자(TNF-${\alpha}$)들이 단백질 대사를 저해하여 근육량의 감소를 더욱 촉진시키며, 염증관련 대사질환의 유병률에 중요한 요인이다. 본 연구에서는 DNA 메틸화가 당뇨병, 심혈관질환, 암과 같은 만성염증성 질환에 관계하고 있다는 최근 연구 결과를 기초로 하여 항염증 영양소와 생리활성을 갖는 식품인자들의 충분한 섭취가 염증조절에 중요하게 기여할 것으로 생각되며, 또한 염증성 질환의 주요 표식자인 DNA 메틸화와 히스톤 변형을 유발하는 효소의 활성 또는 비 암호화된 RNA의 발현을 조절함으로써 근육량 증가와 체지방 감소에 중요한 역할을 하는 것을 살펴보았다. 따라서 최근 새롭게 인식되는 후생유전학적 연구의 중심에 있는 항염증 영양소의 효과와 체성분 변화와의 긍정적 관계를 중심으로 저근육형 비만의 예방 및 인구고령화에 건강한 노화를 위한 효과적인 방법을 제시하였다.

Human Transcriptome and Chromatin Modifications: An ENCODE Perspective

  • Shen, Li;Choi, Inchan;Nestler, Eric J.;Won, Kyoung-Jae
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.60-67
    • /
    • 2013
  • A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE), recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important to understand the information it represents and the techniques that were used to generate these data. In this review, we introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with chromatin modifications.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Current Trends in Nutrigenomics (영양유전체학(Nutrigenomics)의 최근 경향)

  • Choi, Bong-Hyuk;Kim, Jong-Bae;Do, Myoung-Sool
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1642-1654
    • /
    • 2005
  • With the decoding of human genome in 2004 and the recent development in nutritional science there has been an integration of molecular biology and nutrition. As a consequenc a now word ' molecular nutrition ' has been formed and recently the word 'nutrigenomics' is coined and widely being used. The field of science that showed the most positive result from grafting the science of nutrition and nutrigenomics is obesity. In 1994, Jeffrey Friedman from Rockeffeler University announced that ob gene and obesity has a close relationship and since then there's been a huge research done on genes related to obesity from the molecular nutrition's Point of view. Even now there are many genes presented which are supposed to be related to obesity and big efforts are put into finding what exactly those genes do. Moreover studying only in the context of genes was not enough so functional genomics, which is the study of the functions of cells and the functions and effects between genes and Protein Products, is being studied. This review article discusses the relationship between nutrition and genes and the general idea of nutrigenomics. The article also discusses about the current research status on these subjects.

Effect of NUCKS-1 Overexpression on Cytokine Profiling in Obese Women with Breast Cancer

  • Soliman, Nema Ali;Zineldeen, Doaa Hussein;El-Khadrawy, Osama Helmy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.837-845
    • /
    • 2014
  • Background: Overweight and obesity are recognized as major drivers of cancers including breast cancer. Several cytokines, including interleukin-6 (IL-6), IL-10 and lipocalin 2 (LCN2), as well as dysregulated cell cycle proteins are implicated in breast carcinogenesis. The nuclear, casein kinase and cyclin-dependent kinase substrate-1 (NUCKS-1), is a nuclear DNA-binding protein that has been implicated in several human cancers, including breast cancer. Objectives: The present study was conducted to evaluate NUCKS-1 mRNA expression in breast tissue from obese patients with and without breast cancer and lean controls. NUCKS-1 expression was correlated to cytokine profiles as prognostic and monitoring tools for breast cancer, providing a molecular basis for a causal link between obesity and risk. Materials and Methods: This study included 39 females with breast cancer (G III) that was furtherly subdivided into two subgroups according to cancer grading (G IIIa and G IIIb) and 10 control obese females (G II) in addition to 10 age-matched healthy lean controls (G I). NUCKS-1 expression was studied in breast tissue biopsies by means of real-time PCR (RT-PCR). Serum cytokine profiles were determined by immunoassay. Lipid profiles and glycemic status as well as anthropometric measures were also recorded for all participants. Results: IL-6, IL-12 and LCN2 were significantly higher in control obese and breast cancer group than their relevant lean controls (p<0.05), while NUCKS-1 mRNA expression was significantly higher in the breast cancer group compared to the other groups (p<0.05). Significant higher levels of IL-6, IL-12, and LCN2 as well as NUCKS-1 mRNA levels were reported in G IIIb than G IIIa, and positively correlated with obesity markers in all obese patients. Conclusions: Evaluation of cytokine levels as well as related gene expression may provide a new tool for understanding interactions for three axes of carcinogenesis, innate immunity, inflammation and cell cycling, and hope for new strategies of management.

Lack of Replication of Genetic Association with Body Mass Index Detected by Genome-wide Association Study

  • Lee, Hae-In;Kim, Jae-Jung;Park, Tae-Sung;Kim, Kyung-A;Lee, Jong-Eun;Cho, Yoon-Shin;Lee, Jong-Young;Han, Bok-Ghee;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2011
  • Obesity provokes many serious human diseases, including various cardiovascular diseases and diabetes. Body mass index (BMI) is a highly heritable trait that is broadly used to diagnose obesity. To identify genetic loci associated with obesity in Asians, we conducted a genome-wide association study (GWAS) of a population of Korean adults (n=6,742, age 40~60 years) and detected six BMI risk loci (TNR, FAM124B, RGS12, NFE2L3, MC4R and FTO) having p< $1{\times}10^{-5}$. However, in the replication study, only melanocortin 4 receptor gene (MC4R) (rs9946888, p=$4.58{\times}10^{-7}$) was replicated with marginal significance (p<0.05) in the second cohort (n=5,102, age 40~60 years). This study indicates that each locus associated with BMI has very weak genetic effect.

Comparisons of UCP2 Polymorphism, Dietary Habits, and Obesity Index in Normal and Obese University Students (정상체중과 비만인 대학생의 UCP 2 유전자 다형성, 식습관, 비만도 및 체성분의 비교 연구)

  • Ahn, Myoung-Soo;Chang, In-Youb;Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.4
    • /
    • pp.404-413
    • /
    • 2007
  • This study was carried out to compare UCP2 polymorphism, dietary habits, and obesity index in normal and obese university students. The survey was carried out using self-questionnaires collected from the 126 normal and 60 obese university students. The results are summarized as follows. Breakfast was skipped in 43.7% of normal and 49.3% of obesity students and it appeared obese students eat faster than normal students. The percentage of weight control experience were 49.2 and 71.0 in the normal and obese students, respectively. Blood levels of lipid profiles(triglyceride, LDL cholesterol, and HDL cholesterol), hemoglobin, AST and ALT were anaylzed. In UCP2 genes, the frequency of deletion homozygote(DD) was 71.5%, heterozygote(DI) was 26.9% and insertion homozygote(II) was 1.6%. Plasma levels of triglyceride, total cholesterol, LDL cholesterol, and HDL cholesterol of normal students were 79.06, 172.25, 100.86 and 57.03 mg/dl, and those of obese students were 93.06, 173.22, 101.22 and 54.39 mg/dl, respectively. Blood parameters were in normal range in both group. Plasma triglyceride, total cholesterol and LDL cholesterol levels of obese students were higher than those of normal students. On the other hand, plasma HDL cholesterol levels of obese students were lower than those of normal students. Plasma levels of AST and ALT were in normal range in both group. However, AST and ALT levels of obese students were higher than that of normal students. Thus, it was recommended for them to have a nutritional education program to improve their dietary and living habits for obese students’health. Nutritional education program should also be organized practically and systematically.