• Title/Summary/Keyword: Human Genome Project

Search Result 96, Processing Time 0.031 seconds

Semantic Modeling for SNPs Associated with Ethnic Disparities in HapMap Samples

  • Kim, HyoYoung;Yoo, Won Gi;Park, Junhyung;Kim, Heebal;Kang, Byeong-Chul
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Single-nucleotide polymorphisms (SNPs) have been emerging out of the efforts to research human diseases and ethnic disparities. A semantic network is needed for in-depth understanding of the impacts of SNPs, because phenotypes are modulated by complex networks, including biochemical and physiological pathways. We identified ethnicity-specific SNPs by eliminating overlapped SNPs from HapMap samples, and the ethnicity-specific SNPs were mapped to the UCSC RefGene lists. Ethnicity-specific genes were identified as follows: 22 genes in the USA (CEU) individuals, 25 genes in the Japanese (JPT) individuals, and 332 genes in the African (YRI) individuals. To analyze the biologically functional implications for ethnicity-specific SNPs, we focused on constructing a semantic network model. Entities for the network represented by "Gene," "Pathway," "Disease," "Chemical," "Drug," "ClinicalTrials," "SNP," and relationships between entity-entity were obtained through curation. Our semantic modeling for ethnicity-specific SNPs showed interesting results in the three categories, including three diseases ("AIDS-associated nephropathy," "Hypertension," and "Pelvic infection"), one drug ("Methylphenidate"), and five pathways ("Hemostasis," "Systemic lupus erythematosus," "Prostate cancer," "Hepatitis C virus," and "Rheumatoid arthritis"). We found ethnicity-specific genes using the semantic modeling, and the majority of our findings was consistent with the previous studies - that an understanding of genetic variability explained ethnicity-specific disparities.

Progress in the Direct Application of Pharmacogenomics to Patient Care: Sustaining innovation

  • Frueh, Felix W.;Lesko, Lawrence J.;Burckart, Gilbert J.
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The application of the knowledge from the Human Genome Project to clinical medicine will be through both industrial drug development and the application of pharmacogenomics (PG) to patient care. The slow uptake of clinical innovations into clinical practice can be frustrating, but understanding the history of acceptance and sustaining medical innovation is critically important to position PG to succeed. This primarily means that PG tests must have legitimacy; they must be thoroughly validated, must be cost-effective, must be widely accepted by medical practitioners, must be supported by public policy, and must have a way of being easily incorporated into current medical practice. They must also lead to actionalble decisions by health care providers for their patients. Innovative PG assays should be tested in the best US laboratories, and reimbursement for testing must be accepted at the federal and state level. The companies providing these PG tests should be capable of sup-porting the interpretation and use of the test throughout medical practice. Advances such as the addition of PG information to drug labeling and the routine use of validated biomarkers to determine choice of cancer chemotherapy have been made. The PG research community must pay attention to the principles that have been previously described for acceptance and sustaining medical innovations in order for PG to be widely accepted in clinical medical practice.

Basic Concepts of Western Medicine Toxicology and $LD_{50}$ in Herbal Drugs (서양의학 독성학의 기본적 개념 및 한약의 $LD_{50}$)

  • Park Yeon-Chul;Lee Sun-Dong;Park Kyoung-Sik
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.3 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • Today, toxicology is used for many purpose, in many fields. Classification of special toxic effect is related next 4 important principles. 1. The chemical substance must move to target organ or tissue that can induce Biological effect. For this movement, we have to understand the physical-chemical characteristic of substance, and the rout of absorption, metabolism, diffusion and excretion of toxic substance. 2. Every biological effect that induced by chemical substance is not harmful. For example, some specific chemical substance is not harmful in liver enzyme system. 3. The strength of biological effect induced by chemical substance is deep related with dose. Nearly all substance is not effective below the specific dose, and it may toxic to death over the specific dose. It is the 'Dose - response relationship' But carcinogen may toxic whether it is law dose or not. 4. The information that was obtained by experimental animal test, could have to adapt in human biology. Because biological effect of chemical substance could be different in every biological species. In past, drugs was obtained by animal or plants. But in the future, it could be obtained by biochemistry, and genome project. Therefore, in Oriental medicine, research and approach is needed at this time, and have to develop new method of experience in toxic method.

  • PDF

Current Status of Bioinformatics on Bio-databases and it Tools (바이오데이터베이스와 도구를 활용한 바이오인포매틱스의 동향)

  • Im, Dal-Hyuk;Jeon, Sue-Kyoung;Park, Wan-Kyu;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • The union of information-technology and biology presents great possibilities to both applications of bio-information and development of science and technology. Also, meaningful analysis of bio-information brings about a new innovation in the field of bio-market with the advent and growth of bioinformatics. Hence, bioinformatics is the most import aspect for establishing a science-technology-oriented society in the $21^{st}$ century. This article provides trends in current state of bioinformatics. Technological development of bioinformatics for the rapid growth of bio-industry means that using bioinformatics, a biologist can process and store enormous amount of data such as current Human Genome Project and future data in the field of biology. We have manly looked at the tends of bio-information, databases and mining tools that are generally used, and strategies and directions for the future.

Biomarkers for the lung cancer diagnosis and their advances in proteomics

  • Sung, Hye-Jin;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.615-625
    • /
    • 2008
  • Over a last decade, intense interest has been focused on biomarker discovery and their clinical uses. This interest is accelerated by the completion of human genome project and the progress of techniques in proteomics. Especially, cancer biomarker discovery is eminent in this field due to its anticipated critical role in early diagnosis, therapy guidance, and prognosis monitoring of cancers. Among cancers, lung cancer, one of the top three major cancers, is the one showing the highest mortality because of failure in early diagnosis. Numerous potential DNA biomarkers such as hypermethylations of the promoters and mutations in K-ras, p53, and protein biomarkers; carcinoembryonic antigen (CEA), CYFRA21-1, plasma kallikrein B1 (KLKB1), Neuron-specific enolase, etc. have been discovered as lung cancer biomarkers. Despite extensive studies thus far, few are turned out to be useful in clinic. Even those used in clinic do not show enough sensitivity, specificity and reproducibility for general use. This review describes what the cancer biomarkers are for, various types of lung cancer biomarkers discovered at present and predicted future advance in lung cancer biomarker discovery with proteomics technology.

Genetic testing in clinical pediatric practice

  • Yoo, Han Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.273-285
    • /
    • 2010
  • Completion of the human genome project has allowed a deeper understanding of molecular pathophysiology and has provided invaluable genomic information for the diagnosis of genetic disorders. Advent of new technologies has lead to an explosion in genetic testing. However, this overwhelming stream of genetic information often misleads physicians and patients into a misguided faith in the power of genetic testing. Moreover, genetic testing raises a number of ethical, legal, and social issues. Diagnostic genetic tests can be divided into three primary but overlapping categories: cytogenetic studies (including routine karyotyping, high-resolution karyotyping, and fluorescent in situ hybridization studies), biochemical tests, and DNA-based diagnostic tests. DNA-based testing has grown rapidly over the past decade and includes preandpostnatal testing for the diagnosis of genetic diseases, testing for carriers of genetic diseases, genetic testing for susceptibility to common non-genetic diseases, and screening for common genetic diseases in a particular population. Theoretically, once a gene's structure, function, and association with a disease are well established, the clinical application of genetic testing should be feasible. However, for routine applications in a clinical setting, such tests must satisfy a number of criteria. These criteria include an acceptable degree of clinical and analytical validity, support of a quality assurance program, possibility of modifying the course of the diagnosed disease with treatment, inclusion of pre-and postnatal genetic counseling, and determination of whether the proposed test satisfies cost-benefit criteria and should replace or complement traditional tests. In the near future, the application of genetic testing to common diseases is expected to expand and will likely be extended to include individual pharmacogenetic assessments.

Capillary Electrophoresis of Single-stranded DNA

  • Choi, Hyun-Ju;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.943-947
    • /
    • 2003
  • We have studied the migration behavior of single-stranded DNA using capillary gel electrophoresis under various conditions. It was found that optimum electric fields should be less than 150 V/cm for the good tradeoff between the separation time and the resolution. It seems that the gel matrix with the combination of different polymer average molecular weights is important to extend the maximum readable DNA bases. The total gel concentration less than 3.1% in the mixed gel system showed good separation efficiency up to 600 bases. The best result was obtained with the poy(ethylene)oxide (PEO) gel concentration of 1.2% of Mr 8,000,000 and 1.8% of Mr 600,000. We observed that the capillary length between 50 cm to 100 cm (effective length) should be employed for the optimization between the total DNA migration time and the maximum readable length. A trizma base-boric acid-ethlyenediaminetetraacetic acid (EDTA) (TBE) buffer was commonly used for DNA sequencing, but we found that 3-[tris(hydroxymethyl)methyl amino]-1-propane sulfonic acid (TAPS) buffer worked as well for the single-stranded DNA separation. Especially, TAPS buffer showed a good resolution for very short DNA bases (1 to 30 bases).

Building Intelligent User Interface Agent for Semantically Reformulating User Query in Medicine

  • Lim, Chae-Myung;Chu, Sung-Joon;Lee, Dong-Hoon;Park, Duck-Whan;Park, Tae-Young;Yang, Jung-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.57-64
    • /
    • 2003
  • Achieving the beneficiary goal of recent discovery in human genome project still needs a way to retrieve and analyze the exponentially expanding bio-related information. Research on bio-related fields naturally applies knowledge discovered to the current problem and make inferences to extract new information where shared concepts and data containing information need to be defined and used in a coherent way. In such a professional domain, while the need to help users reduce their work and to improve search results has been emerged. methods for systematic retrieval and adequate exchange of relevant information are still in their infancy. The design of our system aims at improving the quality of information retrieval in a professional domain by utilizing both corpus-based and concept-based ontology. Meta-rules of helping users to make an adequate query are formed into an ontology in the domain. The integration of those knowledge permits the system to retrieve relevant information in a more semantic and systematic fashion. This work mainly describes the query models with details of GUI and a secondary query generation of the system.

  • PDF

Progress in the Direct Application of Pharmacogenomics to Patient Care: Sustaining innovation

  • Burckart, Gilbert J.;Frueh, Felix W.;Lesko, Lawrence J.
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.23-39
    • /
    • 2006
  • The application of the knowledge from the Human Genome Project to clinical medicine will be through both industrial drug development and the application of pharmacogenomics (PG) to patient care. The slow uptake of clinical innovations into clinical practice can be frustrating, but understanding the history of acceptance and sustaining medical innovation is critically important to position PG to succeed. This primarily means that PG tests must have legitimacy; they must be thoroughly validated, must be cost-effective, must be widely accepted by medical practitioners, must be supported by public policy, and must have a way of being easily incorporated into current medical practice. They must also lead to actionalble decisions by health care providers for their patients. Innovative PG assays should be tested in the best US laboratories, and reimbursement for testing must be accepted at the federal and state level. The companies providing these PG tests should be capable of supporting the interpretation and use of the test throughout medical practice. Advances such as the addition of PG information to drug labeling and the routine use of validated biomarkers to determine choice of cancer chemotherapy have been made. The PG research community must pay attention to the principles that have been previously described for acceptance and sustaining medical innovations in order for PG to be widely accepted in clinical medical practice.

  • PDF

Research Trend of Genetics in Oncology Nursing: Based on Text Network Analysis (유전종양간호 관련 연구경향: 텍스트 네트워크 분석을 중심으로)

  • Lee, Mijin;Oh, Soonyoung;Choi, Kyungsook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.47-56
    • /
    • 2018
  • The aim of this study is investigate the research trends by analyzing the researches related to Korean and international genetics in oncology nursing. We conducted a text network analysis focusing on the key words presented in the abstracts of papers published in journals related to genetics in oncology nursing. Nurse, Cancer, Genetic, Patient, Knowledge, Care, and Genetic Test were identified as keywords and centralized keywords. As a result of studying research trends over time, researches including keywords such as information, care, and knowledge have increased since the completion of the Human Genome Project in 2003. Key words classified through the meta paradigm of nursing were health, nursing, human, environment order. This study is meaningful in that it can be used to identify trends in tumor genetic nursing research and to set the direction of development of nursing intervention for hereditary cancer patients.