• Title/Summary/Keyword: Human Genome Project

Search Result 96, Processing Time 0.021 seconds

Screening for Natural Bioactive Compounds Targeting the Intracellular Signal Transduction Pathway: Natural Products Modulating the Expression of the Interleukin-2 gene

  • Hakamatsuka, Takashi
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.60-61
    • /
    • 2003
  • Human Genome Project has recently been completed and the information on nucleotide sequences of our whole genome is now available at the public or commercial data banks. Next goals are to identify the functions of each gene and to elucidate the intracellular signal transduction pathways regulating gene expression. We have established a PCR-based bioassay to search for biologically active compounds that can modulate the expression of genes encoding important proteins. (omitted)

  • PDF

"The Korean Genome for Asian Health": A Commercialization Strategy of the Korean Genome Projects ("아시아인 건강을 위한 한국인 게놈" : 한국인 유전체 프로젝트의 상업화 전략)

  • HYUN, Jaehwan
    • Journal of Science and Technology Studies
    • /
    • v.19 no.2
    • /
    • pp.117-167
    • /
    • 2019
  • Since a working draft sequence mapping of the human genome was published in 2001, the variety of the national genome projects has been initiated in South Korea. One of the rationales for such projects is that "the Korean genome database" will be used for "the personalized medicine for Asians." By focusing on the development of human genomics in this country, this paper examines how the discourse has emerged as a strategy for commercializing the national genome. The paper argues that Korean genomicists developed this strategy under the influences of the global "genome sovereignty" policy and local "Asian regionalist" science policy. It will contribute to the literature of the "Asian" race and genomics by shedding new light on the historical formation of the Pan-Asian Single Nucleotide Polymorphism(PASNP) consortium beyond the Singaporean experience.

Workflow-based Bio Data Analysis System for HPC (HPC 환경을 위한 워크플로우 기반의 바이오 데이터 분석 시스템)

  • Ahn, Shinyoung;Kim, ByoungSeob;Choi, Hyun-Hwa;Jeon, Seunghyub;Bae, Seungjo;Choi, Wan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Since human genome project finished, the cost for human genome analysis has decreased very rapidly. This results in the sharp increase of human genome data to be analyzed. As the need for fast analysis of very large bio data such as human genome increases, non IT researchers such as biologists should be able to execute fast and effectively many kinds of bio applications, which have a variety of characteristics, under HPC environment. To accomplish this purpose, a biologist need to define a sequence of bio applications as workflow easily because generally bio applications should be combined and executed in some order. This bio workflow should be executed in the form of distributed and parallel computing by allocating computing resources efficiently under HPC cluster system. Through this kind of job, we can expect better performance and fast response time of very large bio data analysis. This paper proposes a workflow-based data analysis system specialized for bio applications. Using this system, non-IT scientists and researchers can analyze very large bio data easily under HPC environment.

African great apes (chimpanzee and gorilla) : feature, phylogeny and evolution (아프리카 대형 유인원(침팬지, 고릴라) : 특징, 계통 및 진화)

  • 홍경원;김희수
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The chimpanzee and gorilla are classified into hominidae, catarrhini, primates. These species are originated from Africa, so called African great apes. Recently, primatologists have classified that there are 2 species 5 subspecies of the chimpanzee and gorilla, respectively. Since the human genome project has been finished, the chimpanzee genome project has been launched to understand human evolution and genetic diseases. The sequences of chimpanzee chromosome 22 homologous to human chromosome 21 were completed, and then the Y chromosome of chimpanzee is being analyzed. Comparative analysis of human, chimpanzee and gorilla could provide the key for understanding of various human diseases and human origin. By detecting human specific-functional genes or mobile genetic elements (HERV, LINE, SINE) through primate research, we could understand what is human being\ulcorner gradually, For these comparative researches, we summarized fundamental knowledge of the feature, phylogeny and evolution of African great apes including humans.

인간지놈지도완성과 미래사회

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.33 no.6 s.373
    • /
    • pp.43-69
    • /
    • 2000
  • 세계인의 이목이 사람의 유전자정보를 밝히는 인간지놈계획(Human Genome Project)에 집중되고 있다. 인간지놈지도 완성이 몰고올 파장이 엄청날 것으로 보기 때문이다. 인간지놈프로젝트의 배경부터 그 완성의 의미 그리고 산업에 미치는 영향과 벤처기업 및 윤리적인 문제를 총 점검해 본다.

  • PDF

Bioinformatics의 소개와 이용

  • Kim, Gwang-Su
    • Journal of Scientific & Technological Knowledge Infrastructure
    • /
    • s.3
    • /
    • pp.20-25
    • /
    • 2000
  • 생물정보학은 넓은 의미로 컴퓨터를 이용하여 모든 생화학정보를 광범위하게 연구.활용하는 학문이라고 할 수 있다. 하지만 최근의 인간유전체사업(Human Genome Project)의 인기에 의해 생물정보학이 DNA나 단백질의 서열 정보 분석의 분야로만 편중되어 의미되는 경향이 많은 것이 사실이다.

  • PDF

신약개발을 위한 화학정보학-Cheminformatics

  • No, Gyeong-Tae;Lee, Seong-Gwang
    • Journal of Scientific & Technological Knowledge Infrastructure
    • /
    • s.3
    • /
    • pp.68-75
    • /
    • 2000
  • 생물정보학은 넓은 의미로 컴퓨터를 이용해 모든 생화학정보를 광범위하게 연구.활용하는 학문이라고 할 수 있다. 하지만 최근의 인간유전체사업(Human Genome Project)의 인기에 의해 생물정보학이 DNA나 단백질 서열정보 분석의 분야로만 편중되어 의미되는 경향이 많은 것이 사실이다.

  • PDF

Analysis of differences in human leukocyte antigen between the two Wellcome Trust Case Control Consortium control datasets

  • Jang, Chloe Soohyun;Choi, Wanson;Cook, Seungho;Han, Buhm
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.29.1-29.8
    • /
    • 2019
  • The Wellcome Trust Case Control Consortium (WTCCC) study was a large genome-wide association study that aimed to identify common variants associated with seven diseases. That study combined two control datasets (58C and UK Blood Services) as shared controls. Prior to using the combined controls, the WTCCC performed analyses to show that the genomic content of the control datasets was not significantly different. Recently, the analysis of human leukocyte antigen (HLA) genes has become prevalent due to the development of HLA imputation technology. In this project, we extended the between-control homogeneity analysis of the WTCCC to HLA. We imputed HLA information in the WTCCC control dataset and showed that the HLA content was not significantly different between the two control datasets, suggesting that the combined controls can be used as controls for HLA fine-mapping analysis based on HLA imputation.

Human Transcriptome and Chromatin Modifications: An ENCODE Perspective

  • Shen, Li;Choi, Inchan;Nestler, Eric J.;Won, Kyoung-Jae
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.60-67
    • /
    • 2013
  • A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE), recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important to understand the information it represents and the techniques that were used to generate these data. In this review, we introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with chromatin modifications.

The Korean HapMap Project Website

  • Kim, Young-Uk;Kim, Seung-Ho;Jin, Hoon;Park, Young-Kyu;Ji, Mi-Hyun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.91-94
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and are a resource for mapping complex genetic traits. A genome is covered by millions of these markers, and researchers are able to compare which SNPs predominate in people who have a certain disease. The International HapMap Project, launched in October, 2002, motivated us to start the Korean HapMap Project in order to support Korean HapMap infrastructure development and to accelerate the finding of genes that affect health, disease, and individual responses to medications and environmental factors. A Korean SNP and haplotype database system was developed through the Korean HapMap Project to provide Korean researchers with useful data-mining information about disease-associated biomarkers for studies on complex diseases, such as diabetes, cancer, and stroke. Also, we have developed a series of software programs for association studies as well as the comparison and analysis of Korean HapMap data with other populations, such as European, Chinese, Japanese, and African populations. The developed software includes HapMapSNPAnalyzer, SNPflank, HWE Test, FESD, D2GSNP, SNP@Domain, KMSD, KFOD, KFRG, and SNP@WEB. We developed a disease-related SNP retrieval system, in which OMIM, GeneCards, and MeSH information were integrated and analyzed for medical research scientists. The kHapMap Browser system that we developed and integrated provides haplotype retrieval and comparative study tools of human ethnicities for comprehensive disease association studies (http://www.khapmap.org). It is expected that researchers may be able to retrieve useful information from the kHapMap Browser to find useful biomarkers and genes in complex disease association studies and use these biomarkers and genes to study and develop new drugs for personalized medicine.