• Title/Summary/Keyword: Human Genome Project

Search Result 96, Processing Time 0.044 seconds

ENCODE: A Sourcebook of Epigenomes and Chromatin Language

  • Yavartanoo, Maryam;Choi, Jung Kyoon
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.2-6
    • /
    • 2013
  • Until recently, since the Human Genome Project, the general view has been that the majority of the human genome is composed of junk DNA and has little or no selective advantage to the organism. Now we know that this conclusion is an oversimplification. In April 2003, the National Human Genome Research Institute (NHGRI) launched an international research consortium called Encyclopedia of DNA Elements (ENCODE) to uncover non-coding functional elements in the human genome. The result of this project has identified a set of new DNA regulatory elements, based on novel relationships among chromatin accessibility, histone modifications, nucleosome positioning, DNA methylation, transcription, and the occupancy of sequence-specific factors. The project gives us new insights into the organization and regulation of the human genome and epigenome. Here, we sought to summarize particular aspects of the ENCODE project and highlight the features and data that have recently been released. At the end of this review, we have summarized a case study we conducted using the ENCODE epigenome data.

Human Genome Project (인간유전체 사업)

  • Kwon, Oh-Joo
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.196-202
    • /
    • 2001
  • The completion of the rough draft of the human genome is a remarkable achievement. It provides the overall structures of huge DNA molecules that constitute the genome and an outline of the information needed to create a human being. This paper reviewed new ideas, projects, and scientific advances made by the Human Genome Project. We also discussed the future of medicine and biomedical research in postgenomic era.

  • PDF

A Short History of the Genome-Wide Association Study: Where We Were and Where We Are Going

  • Ikegawa, Shiro
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.220-225
    • /
    • 2012
  • Recent rapid advances in genetic research are ushering us into the genome sequence era, where an individual's genome information is utilized for clinical practice. The most spectacular results of the human genome study have been provided by genome-wide association studies (GWASs). This is a review of the history of GWASs as related to my work. Further efforts are necessary to make full use of its potential power to medicine.

KAREBrowser: SNP database of Korea Association REsource Project

  • Hong, Chang-Bum;Kim, Young-Jin;Moon, Sang-Hoon;Shin, Young-Ah;Cho, Yoon-Shin;Lee, Jong-Young
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.47-50
    • /
    • 2012
  • The International HapMap Project and the Human Genome Diversity Project (HGDP) provide plentiful resources on human genome information to the public. However, this kind of information is limited because of the small sample size in both databases. A Genome-Wide Association Study has been conducted with 8,842 Korean subjects as a part of the Korea Association Resource (KARE) project. In an effort to build a publicly available browsing system for genome data resulted from large scale KARE GWAS, we developed the KARE browser. This browser provides users with a large amount of single nucleotide polymorphisms (SNPs) information comprising 1.5 million SNPs from population-based cohorts of 8,842 samples. KAREBrowser was based on the generic genome browser (GBrowse), a web-based application tool developed for users to navigate and visualize the genomic features and annotations in an interactive manner. All SNP information and related functions are available at the web site http://ksnp.cdc. go.kr/karebrowser/.

Perspectives on Functional Genomics

  • Song, Kyuyoung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.307-312
    • /
    • 2000
  • As the first assembly of the human genome was announced on June 26, 2000, we have entered post genome era. The genome sequence represents a new starting point for science and medicine with possible impact on research across the life sciences. In this review I tried to offer brief summaries of history and progress of the Human Genome Project and two major challenges ahead, functional genomics and DNA sequence variation research.

  • PDF

Bioinformatics - Present and Future

  • Son, Hyeon S.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.14-14
    • /
    • 2002
  • Genome project is a research for discovering genomic information. Human genome sequence, under the title of HGP(human genome project), was drafted successfully at the end of June, 2000. And the academic world soon predicted that related research field would be activated and since then bioinformatics has been in the spotlight.(omitted)

  • PDF

DNA Chip Technologies

  • Hwang, Seoung-Yong;Lim, Geun-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2000
  • The genome sequencing project has generated and will contitute to generate enormous amounts of sequence data. Since the first complete genome sequence of bacterium Haemophilus in fluenzae was published in 1995, the complete genome sequences of 2 eukaryotic and about 22 prokaryotic organisms have detemined. Given this everincreasing amounts of sequence information, new strategies are necessary to efficiently pursue the phase of the geome project- the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip technology was developed to efficienfly identify the differential expression pattern of indepondent biogical samples. DNA chip provides a new tool for genome expreesion analysis that may revolutionize revolutionize many aspects of human kife including mew surg discovery and human disease diagnostics.

  • PDF

DNA Fragment Assembly

  • 박근수
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.105-121
    • /
    • 2002
  • 최근 인간 지놈(genome)의 DNA가 밝혀져서 많은 관심을 받았는데, 이를 수행하는 방법을 소개한다. Human Genome Project에서 채택한 BAC-to-BAC 방식과 Celera 회사에서 채택한 whole genome shotgun 방식을 설명한다. 또한 두 방식에서 공히 fragment assembly 프로그램을 사용하는데, 이 프로그램의 개요를 설명한다.

  • PDF

In Silico Functional Assessment of Sequence Variations: Predicting Phenotypic Functions of Novel Variations

  • Won, Hong-Hee;Kim, Jong-Won
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.166-172
    • /
    • 2008
  • A multitude of protein-coding sequence variations (CVs) in the human genome have been revealed as a result of major initiatives, including the Human Variome Project, the 1000 Genomes Project, and the International Cancer Genome Consortium. This naturally has led to debate over how to accurately assess the functional consequences of CVs, because predicting the functional effects of CVs and their relevance to disease phenotypes is becoming increasingly important. This article surveys and compares variation databases and in silico prediction programs that assess the effects of CVs on protein function. We also introduce a combinatorial approach that uses machine learning algorithms to improve prediction performance.