• Title/Summary/Keyword: Human Fibroblast

검색결과 799건 처리시간 0.035초

Peptide Hydrolysates from Astragalus membranaceus Bunge Inhibit the Expression of Matrix Metalloproteinases in Human Dermal Fibroblasts

  • Park, Sun Ki;Van Hien, Pham;Van Luong, Hoang;Yan, Shao-Wei;Byun, Sang Yo
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.380-384
    • /
    • 2014
  • Inhibition effects of peptide hydrolysates from Astragalus membranaceus Bunge. on the expression of the matrix metalloproteinases (MMPs) in human dermal fibroblasts were evaluated in vitro. Crude peptides were obtained by the hydrolysis of proteins extracted from A. membranaceus. Peptides were purified partially by the basis on the molecular weight using 40% polyacrylamide gel electrophoresis before treatment with human dermal fibroblasts. Basis on the doseeffect experiments, expressions of MMPs including MMP-1, MMP-3, MMP-8, MMP-13 in human dermal fibroblasts were evaluated. Expressions of MMP-1, MMP-3, MMP-8 and MMP-13 were reduced in 43%, 5%, 22% and 57% respectively. The mass spectrometric analysis of partially purified peptides from A. membranaceus, which strongly inhibit expressions of MMPs, indicated that the peptides were composed of molecules below 1500 Da.

Effect of Kaempferol on the Cytotoxicity Induced Oxygen Free Radicals in Skin Fibroblast Derived from Human In Vitro

  • Lee, Jai-Kyoo;Ha, Dae-Ho
    • 대한의생명과학회지
    • /
    • 제14권3호
    • /
    • pp.193-198
    • /
    • 2008
  • In order to evaluate on the effect of kaempferol on the cytotoxicity of oxygen tree radicals, XTT assay was performed to determine the cell viability after skin fibroblasts derived from human (Detroit 51) that were treated with various concentrations of hydrogen peroxide $(H_2O_2)$. And also, the effect of kaempferol on the cytotoxicity induced by H202 that was examined by cell viability, lactate dehydrogenase (LDH) activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in these cultures. $H_2O_2$ decreased cell viability in dose-dependent manner in these cultures and the $XTT_{90}\;and\;XTT_{50}$ values were determined at concentration of $35{\mu}M\;and\;90{\mu}M$ of $H_2O_2$ after skin fibroblasts derived from human were treated with $15{\sim}90{\mu}M$ of $H_2O_2$ for 6 hours, respectively. $H_2O_2$ was highly toxic on cultured skin fibroblasts derived from human by toxic criteria of Brenfreund and Puerner (1984). In the protective effect of kaempferol on $H_2O_2$-induced cytotoxicity, kaempferol increased DPPH radical scavenging activity and significantly decreased LDH activity. From these results, it is suggested that oxygen tree radical, $H_2O_2$, was highly toxic on cultured skin fibroblasts derived from human, and also kaempferol of flavonoid showed the protection on $H_2O_2$-induced cytotoxicity.

  • PDF

Antioxidant Effect of Poncirin and Cytotoxicity on Cultured Human Skin Fibroblast Damaged by Methyl Mercury

  • ;;최유선
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.355-360
    • /
    • 2007
  • In order to evaluate on the cytotoxicity of methyl mercury (MM) and antioxidant effect of phenolic compound, poncirin against MM-induced cytotoxicity, XTT assay was performed to determine the cell viability after human skin fibroblasts (Detroit 51) were grown in the media containing various concentrations of methylmercuric chloride (MMC). And also, the antioxidant effect of poncirin on the cytotoxicity induced by MMC was examined by cell viability and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in these cultures. MMC decreased cell viability in dose-dependent manner in these cultures and the midcytotoxicity value was determined at concentration of 30 ${\mu}M$ MMC after human skin fibroblasts were treated with $10\sim50{\mu}M$ MMC for 72 hours, respectively. MMC was highly toxic on cultured human skin fibroblasts by toxic criteria. MMC-mediated cytotoxicity was related with oxidative stress by the diminution of toxic effect according to the treatment of vitamin E. In the antioxidant effect of poncirin, it showed vitamin E-like DPPH radical scavenging activity at 90 ${\mu}g/ml$ poncirin and also, remarkably increased cell viability compared with MMC-treated group. From these results, it is suggested that MMC-mediated cytoxicity was highly toxic and was related with oxidative stress in cultured human skin fibroblasts, and also phenolic compound such as poncirin showed the protection on MMC-induced cytotoxicity by antioxidant effect in these cultures.

  • PDF

In vitro Alternatives to Skin Irritation Test

  • Shin, Dae-Sup;Kim, Dai-Byung;Ryu, Seung-Rel;Lee, Sun-Hee;Koh, Jae-Sook;Park, Won-Sae;Kim, Pu-Young
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.242-244
    • /
    • 1995
  • In vitro cell culture system has been proposed as a promising alternative model to in vivo skin irritation test. These studies were performed to screen the cytotoxicity effects of surfactants using normal human skin fibroblasts. Cell membrane integrity assessed by the leakage of lactate dehydrogenase (LDH) and mitochondrial integrity by MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromides reduction test were affected in a dose dependent manner. The irritation potential of surfactants to human skin patch test, and the changes of capillary permeability by rabbit intradermal safety test were assessed as in vivo methods. Our results suggest that LDH leakage assay and MTT reduction test using cultured human fibroblasts could be predictive for the irritancy of various surfactants in human, and LDH assay is superior correlated with in vivo test (r=0.886) to MTT test with in vivotest (r=0.757).

  • PDF

혈갈산(血竭散)이 항염작용(抗炎作用)에 미치는 영향(影響) (Experimental study on the Anti-inflammatory and wound healing effect of Hyelgalsan)

  • 임낙철
    • 혜화의학회지
    • /
    • 제7권1호
    • /
    • pp.921-938
    • /
    • 1998
  • Hyelgalsan(HGS) is important prescriptions that have been used in oriental medicine for stomatitis and wound healing. The study was done to evaluate the inhibitory effects of cytotoxicity, formation of superoxide on the macrophage and neutrophil, prostaglandins($PGE_2$), interleukins($IL-1{\beta}$), collagenase activity and synthesis of collagen and DNA. The results were obtained as follows: 1. HGS was not showed the proliferation difference of human fibroblast and monocyte in all concentrations to be experimented and in result, it was concluded that they have no cytotoxicity. 2. HGS inhibited the formation of superoxide to 48% at the concentration of 0.01% in the mouse monocyte. 3. HGS was not showed the proliferation difference of human monocyte in all concentrations to be experimented and in result, it was concluded that they inhibited the formation of superoxide. 4. HGS was not showed the proliferation difference of human neutrophil in all concentrations to be experimented and in result, it was concluded that they inhibited the formation of superoxide. 5. The concentration of inhibiting the production of prostaglandins($PGE_2$) to slight in the human monocyte stimulated with E. coli were 0.01% of HGS. 6. The concentration of inhibiting the production of interleukins($IL-1{\beta}$) to slight in the human monocyte stimulated with E. coli were 0.001% and 0.0001% of HGS. 7. HGS didn't influence on collagen synthesis and total protein in fibroblasts. 8. HGS inhibited the collagenase activity to 22% at 0.1%, 45% at 0.2%, 57% at 0.5% respectively.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals (IV) - in vitro Chromosomal Aberration Assay with 18 Chemicals in Chinese Hamster Lung Cells -

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Youn-Jung
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권3호
    • /
    • pp.149-156
    • /
    • 2002
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 18 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 4-Chloro-3,5-dimethyl phenol (CAS No. 88-04-0) induced chromosomal aberrations with significance at the concentration of 15.7 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. Phenoxybenzene (CAS No. 101-84-8) which is one of the most cytotoxic chemical among 18 chemicals tested revealed no clastogenicity in the range of 0.11-0.43 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 18 synthetic chemicals in Chinese hamster lung cells in vitro, 4-chloro-3,5-dimethyl phenol (CAS No. 88-04-0) revealed weak positive clastogenic results in this study.

  • PDF

낙타유가 함유된 리포좀 제조 및 피부 노화 개선 효과 연구 (Preparation of Camel Milk Liposome and Its Anti-Aging Effects)

  • 최성규;박근동;김다애;이대우;김윤정
    • 대한화장품학회지
    • /
    • 제40권2호
    • /
    • pp.155-162
    • /
    • 2014
  • 본 연구에서는 낙타유를 유효성분으로 하여 리포좀을 제조하였고, 이를 이용하여 항노화 효능을 갖는 화장품 원료를 개발하고자 다양한 실험을 실시하였다. 제조된 낙타유 리포좀은 피부 섬유아세포에서 collagen과 hyaluronan synthase-3 (HAS-3)의 발현을 증가시키고 matrix metalloproteinase (MMP)-1의 발현을 감소시킬 뿐 아니라 elastase의 활성을 억제하여 주름 개선 기능을 갖는 것을 확인하였다. 또한 자외선으로부터 손상된 세포를 재생시키는 효과를 확인하였다. 이에 따라 낙타유를 함유한 리포좀은 항노화 소재로 활용할 수 있을 것으로 사료된다.

Cytotoxic Potentials of Tellurium Nanowires in BALB/3T3 Fibroblast Cells

  • Mahto, Sanjeev Kumar;Vinod, T.P.;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3405-3410
    • /
    • 2011
  • We have investigated the cytotoxic potential of tellurium (Te) nanowires in BALB/3T3 fibroblast cells. Te nanowires were synthesized through an aqueous phase surfactant assisted method. Toxicological experiments, such as analysis of morphological changes, MTT assay, DAPI staining, and estimation of intracellular reactive oxygen species, were carried out to reveal the cytotoxic effects of Te nanowires. Te nanowires were found to be cytotoxic at all concentrations tested, in a dose-dependent manner. The UV/Vis spectra of Te nanowires suspended in a culture medium showed drastic changes and disappearance of two broad absorption peaks. The physicochemical properties such as, surface charge, size, and shape of Te nanowires were found to be altered during exposure of cells, due to the instability and agglomeration of nanowires in the culture medium. These results suggest that the chemical components of the DMEM medium significantly affect the stability of Te nanowires. In addition, TEM images revealed that necrosis was the basic pattern of cell death, which might stem from the formation of toxic moieties of tellurium, released from nanowire structures, in the bioenvironment. These observations thus suggest that Te nanomaterials may pose potential risks to environmental and human health.

Comparison of Sensitivity Between Balb/c 3T3 Cell and HaCaT Cell by NRU Assay to Predict Skin Phototoxicity Potential

  • Lee, Jong-Kwon;Lee, Eun-Hee;Lee, Sun-Hee
    • Toxicological Research
    • /
    • 제18권3호
    • /
    • pp.227-232
    • /
    • 2002
  • In order to find out the appropriate in vitro method for high correlation with in vivo, we com-pared the sensitivities of phototoxicity (PT) in vitro method between in human keratinocytes, HaCaT cells and in 3T3 fibroblast cells derived from Balb/c mice. Both cells were exposed to six known phototoxic chemicals : promethazine, neutral red, chlortetracycline, amiodarone, bithionol, 8-methoxypsoralen, or non-phototoxic chemical, ALS (ammonium laureth sulfate) and then irradiated with 5 J/$cm^2$ of UVA. Cell viability ($IC_{50}$ ) was measured by neutral red uptake (NRU) assay. The ratio of $IC_{50}$ value of chemicals in the presence and absence of UVA was determined by the cut-off value. The phototoxic potential of test chemicals in NRU assay was determined by measuring the photoirriation factor (PIF) with a cut-off value of 5. In both 3T3 and HaCaT cells, all known phototoxic chemicals were positive (over 5 of PIF value), except that bithionol was found to be non-phototoxic to HaCaT cells, and ALS, non-phototoxic chemical was negative. These results suggest that Balb/c 3T3 cell was more sensitive than HaCaT cell to predict phototoxicity potential.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIV)-in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Cells

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.89-96
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 1-Chloro-3-bromopropane CAS No. 109-70-6) induced chromosomal aberrations with significance at the concentration of $185.0\;{\mu}g/mL\;and\;1,600\;{\mu}g/mL$ both in the presence and absence of metabolic activation system, respectively. Triphenyl phosphite (CAS No. 101-02-0), which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity in the range of $95.0-4.9\;{\mu}g/mL$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in Chinese hamster lung cells in vitro, 1-chloro-3-bromopropane revealed a positive clastogenic result in this study.