Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.5.380

Peptide Hydrolysates from Astragalus membranaceus Bunge Inhibit the Expression of Matrix Metalloproteinases in Human Dermal Fibroblasts  

Park, Sun Ki (CIR Center, Cosmecca Korea)
Van Hien, Pham (Cosmetic Science Major, Department of Applied Biotechnology, Graduate School, Ajou University)
Van Luong, Hoang (Vietnam Military Medical University)
Yan, Shao-Wei (Cosmetic Science Major, Department of Applied Biotechnology, Graduate School, Ajou University)
Byun, Sang Yo (Cosmetic Science Major, Department of Applied Biotechnology, Graduate School, Ajou University)
Publication Information
KSBB Journal / v.29, no.5, 2014 , pp. 380-384 More about this Journal
Abstract
Inhibition effects of peptide hydrolysates from Astragalus membranaceus Bunge. on the expression of the matrix metalloproteinases (MMPs) in human dermal fibroblasts were evaluated in vitro. Crude peptides were obtained by the hydrolysis of proteins extracted from A. membranaceus. Peptides were purified partially by the basis on the molecular weight using 40% polyacrylamide gel electrophoresis before treatment with human dermal fibroblasts. Basis on the doseeffect experiments, expressions of MMPs including MMP-1, MMP-3, MMP-8, MMP-13 in human dermal fibroblasts were evaluated. Expressions of MMP-1, MMP-3, MMP-8 and MMP-13 were reduced in 43%, 5%, 22% and 57% respectively. The mass spectrometric analysis of partially purified peptides from A. membranaceus, which strongly inhibit expressions of MMPs, indicated that the peptides were composed of molecules below 1500 Da.
Keywords
Astragalus membranaceus; Peptide hydrolysate; Matrix metalloproteinase; Human dermal fibroblast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fling, S. P. and D. S. Gregerson (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Analytical Biochem. 155: 83-88.   DOI   ScienceOn
2 Shagger, H. and G. V. Jagow (1987) Tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochem. 166: 368-379.   DOI   ScienceOn
3 Peterson, J. T. (2004) Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Fail Rev. 9: 63-79.   DOI
4 Jenkins, G. (2002) Molecular mechanisms of skin ageing. Mechanisms of Ageing and Development 123: 801-810.   DOI   ScienceOn
5 Lauer-Fields, J. L., D. Juska, and G. B. Fields (2002) Matrix metalloproteinases and collagen catabolism. Biopolymers 66: 19-32.   DOI   ScienceOn
6 Holmbeck, K., P. Bianco, S. Yamada, and H. Birkedal-Hansen (2004) MT1-MMP: a tethered collagenase. J. Cell. Physiol. 200: 11-19.   DOI
7 Quan, T. H., Z. P. Qin, W. Xia, Y. Shao, J. J. Voorhees, and G. J. Fisher (2009) Matrix-degrading metaloproteinases in photoaging. J. Investig. Dermatol. Symp. Proc. 14: 20-24.   DOI   ScienceOn
8 Rittie, L. and G. J. Fisher (2002) UV-light-induced signal cascades and skin aging. Ageing Research Reviews. 1: 705-720.   DOI   ScienceOn
9 Benson, H. A. and S. Namjoshi (2008) Proteins and peptides: Strategies for delivery to and across the skin. Journal of Pharmaceutical Sciences 97: 3591-3610.   DOI   ScienceOn
10 Zhang, S., Y. Qiu, and Y. Gao (2014) Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment. Acta Pharmaceutica Sinica B 4: 100-104.   DOI
11 Kitagawa, I., H. Wang, M. Saito, et al (1983) Chemical constituents of Astragali radix, the root of Astragalus membranaceus bunge. Astragalosides, I, II, IV, acetylastragaloside I and isoastragalosides I and II. Chem. Pharm. Bull. 31: 698-708.   DOI
12 Calleja-Agius, J. and M. Brincat (2013) Skin connective tissue and ageing. Best Practice & Research Clinical Obstetrics and Gynaecology 27: 727-740.   DOI
13 Drugsite Trust, Astragalus. http://www.drugs.com/npc/astragalus. html (2012).
14 Kitagawa, I., H. Wang, A. Takagi, et al (1983) Chemical constituents of Astragali radix, the root of Astragalus membranaceus Bunge. Cycloastragenol, the 9,19-cyclolanostane-type aglycone astragalosides, and the artifact aglycone astrgenol. Chem. Pharm. Bull. 31: 689.   DOI
15 Kitagawa, I., H. Wang, M. Saito, and M. Yoshikawa (1983) Chemical constituents of Astragali radix, the root of Astragalus membranaceus bunge. Astragalosides III, V, and VI. Chem. Pharm. Bull. 31: 709-715.   DOI
16 Lin, L. Z., X. G. He, M. Lindenmaier, et al (2000) Liquid chromatography- electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. J. Chromatogr. A. 876:87-95   DOI
17 He, Z. and J. Findlay (1991) Constituents of Astragalus membranaceus. J. Nat. Prod. 54: 810-815.   DOI
18 Kitagawa, I., H. Wang, and M. Yoshikawa (1983) Chemical constituents of Astragali radix, the root of Astragalus membranaceus bunge. Astragalosides VII and VIII. Chem. Pharm. Bull. 31: 716-722.   DOI
19 Li, R., W. C. Chen, W. P. Wang, W. Y. Tian, and X. G. Zhang (2010) Antioxidant activity of Astragalus polysaccharides and antitumor activity of the polysaccharides and siRNA. Carbohydrate Polymers 82: 240-244.   DOI
20 Shardella, D., G. F. Fasciglione, M. Gioia, C. Ciaccio, G. R. Tundo, S. Marini, and M. Coletta (2012) Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mole- cular Aspects of Medicine 33: 119-208.   DOI   ScienceOn
21 Wang, B., Y. D. Gong, Z. R. Li, D. Yu, C. F. Chi, Jian, and Y. Ma (2014) Isolation and characterisation of five novel antioxidant peptides from ethanol-soluble proteins hydrolysate of spotless smoothhound. Journal of Functional Foods 6: 176-185.   DOI