• Title/Summary/Keyword: Human Fibroblast

Search Result 799, Processing Time 0.029 seconds

Modulation of Large Conductance $Ca^{2+}-activated$ $K^+4$ Channel of Skin Fibroblast (CRL-1474) by Cyclic Nucleotides

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • Potassium channels in human skin fibroblast have been studied as a possible site of Alzheimer disease pathogenesis. Fibroblasts in Alzheimer disease show alterations in signal transduction pathway such as changes in $Ca^{2+}$ homeostasis and/or $Ca^{2+}-activated$ kinases, phosphatidylinositol cascade, protein kinase C activity, cAMP levels and absence of specific $K^+$ channel. However, little is known so far about electrophysiological and pharmacological characteristics of large-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) channel in human fibroblast (CRL-1474). In the present study, we found Iberiotoxin- and TEA-sensitive outward rectifying oscillatory current with whole-cell recordings. Single channel analysis showed large conductance $K^{+}$ channels (106 pS of chord conductance at +40 mV in physiological $K^+$ gradient). The 106 pS channels were activated by membrane potential and $[Ca^{2+}]_i$, consistent with the known properties of $BK_{Ca}$ channels. $BK_{Ca}$ channels in CRL-1474 were positively regulated by adenylate cyclase activator ($10{\mu}M$ forskolin), 8-Br-cyclic AMP ($300{\mu}M$) or 8-Br-cyclic GMP ($300{\mu}M$). These results suggest that human skin fibroblasts (CR-1474) have typical $BK_{Ca}$ channel and this channel could be modulated by c-AMP and c-GMP. The electrophysiological characteristics of fibroblasts might be used as the diagnostic clues for Alzheimer disease.

A Study on the Insulin Receptor of the Cultured Human Fibroblasts (정상인(正常人) 배양섬유아세포(培養纖維芽細胞)의 인슐린 수용체(受容體)에 관한 연구(硏究))

  • Cho, Kyung-Sam;Kim, Jin-Woo;Kim, Young-Seol;Kim, Kwang-Won;Kim, Sun-Woo;Choi, Young-Kil
    • The Korean Journal of Nuclear Medicine
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 1983
  • To evaluated the usefulness of cultured human fibroblast for insulin receptor assay, the authors cultured fibroblast from biopsied normal adult female eyelid skin and assayed the insulin receptor with radioreceptor assay method. From the data obtained, percent of labeled insulin bound, numbers of insulin binding sites, affinity constants(Ka) and affinity of the empty sites(Ke) were calculated. The results were as follow; 1) The percent radioactivity bound of cultured fibroblast reached plateau at 4 hours $15^{\circ}C$ incubation. 2) The scatchard plot of insulin binding to cultured human fibroblast was curvilinear and the affinity to receptor was decreased with increased receptor occupancy. 3) The numbers of high affinity, low affinity and total insulin receptor of cultured fibroblasts were 852, 24,800 and 25,652 sites per cell. 4) High and low affinity constants of cultured fibroblasts were $3.4\times^{10}M^{-1},\;and\;1.08\times10^8M^{-1}$, and the affinity of empty site was $5.0\times10^8M^{-1}$.

  • PDF

Effect of Kimchi Extracts to Reactive Oxygen species in Skin Cell Cytotoxicity (김치 추출물의 활성산소에 대한 피부세포 독성 완화효과)

  • 류승희;전영수;권명자;문정원;이영순;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.814-821
    • /
    • 1997
  • Kimchi is composed of many ingredients such as Chinese cabbage, garlic, ginger, and red pepper and fermented fish extract. Some of them were known to have antioxidative activities due to their scavenging effect against reactive oxygen species(ROS). To study the health effects of kimchi on human skin cells, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured in oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence and presence of kimchi extract. The survival rate of keratinocyte was greatly reduced when exposed over 1mM concentration of hydrogen peroxide($H_{2}O_{2}$), but cytotoxicity of $H_{2}O_{2}$ was significantly reduced by kimchi extracts on cells. Especially 2 week-fermented kimchi decreased remarkably the cytotoxicity by $H_{2}O_{2}$ to keratinocyte cells. Over 1mM of paraquat concentration showed strong cell toxicity on keratinocyte, but the extracts from kimchi fermented for 1, 2 and 3 weeks showed protective effects in order. Fibroblast cells were significantly affected by $H_{2}O_{2}$ as were keratinocyte cells. Although almost all extacts of kimchi of different fermentation periods showed protective effect against cell killing at 0.5mM concentration of $H_{2}O_{2}$ week-fermented kimchi extract showed the strongest protective effect on fibroblast cells treated with 1mM $H_{2}O_{2}$ for either 1 day or 4 days. However most of kimchi extracts showed weak preventive effect or no effect on oxidative stress produced by paraquat. In conclusion, 2 week-fermented kimchi extract seems to have the best potential in preventing skin cells against oxidative damage which might be related to their scavenging effects of kimchi components produced during their fermentation process.

  • PDF

Cytokines Regulate the Expression of the Thymus and Activation-Regulated Chemokine (TARC; CCL17) in Human Skin Fibroblast Cells

  • Lee, Ji-Sook;Kim, In-Sik;Kim, Dong-Hee;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Allergic inflammation is thought to be a Th2 cell-dominant immune response during which tissue-resident fibroblasts produce chemokines which contribute to the recruitment of migratory leukocytes to sites of tissue injury. Thymus and activation-regulated chemokine (TARC; CCL17) is a potent member of the CC chemokine family and a selective chemoattractant for Th2 cells. In order to study the regulatory profiles of TARC production by $TNF-{\alpha}$, $IFN-{\gamma}$, and Il-4 in human normal skin fibroblast, CCD-986sk cell line was used. The expression of TARC protein was measured using ELISA, and mRNA level was detected by RT-PCR. The combination of $TNF-{\alpha}$ and IL-4 induced a time-and dose-dependent synergistic increase in the expression of TARC at both protein and mRNA levels in the cultured human skin fibroblasts. Exposure of the cells to single cytokine had no effect on TARC expression. The high concentration (100 ng/ml) and long incubation time (72 h) of $IFN-{\gamma}$ further enhanced the TARC production induced by $TNF-{\alpha}$/lL-4 in the skin fibroblast. This synergistic effect of Th1 and Th2 type cytokines on TARC production by skin fibroblasts may contribute to the inflammatory cell infiltration and tissue damage with allergic inflammation.

An Experimental Study on the Effects of Low Level Laser Irradiation on the Cell Viability of Cultured Fibroblast (저출력레이저조사가 배양섬유아세포의 생존력에 끼치는 영향에 관한 실험적 연구)

  • Keun-Young Yang;Kyung-Soo Han;Sae-Sook Kang
    • Journal of Oral Medicine and Pain
    • /
    • v.18 no.2
    • /
    • pp.97-106
    • /
    • 1993
  • This study was performed to investigate the effects of infrared and visible light laser irradiation on cell viability of human gingival fibroblast. For the present study, the author used cultured fibroblast originated from sound gingiva which were fifth of sixth passage. Laser machine utilized here were stomalaser which irradiate infrared (GaAs diode) and red (HeNe) laser in turn with pulse wave pattern or continuous wave pattern, and the machine had several frequency mode presented by regeneration, relaxation and analgesic modalities. Cultured fibroblast samples were divided by this modalities of cell counts and laser exposure time which were 7-seconds of 150 seconds, respectively. 1 day after laser irradiation, each cell-well was treated with MTT and measured optical density with ELISA. The obtained results were as follows : 1. There was a tendency of increasing optical density in proportion to irradiation time in groups of $1\times10^4$ cell per well but in groups of $5\times10^3$ cell per well, reverse phenomena were observed. 2. The difference of optical density according to frequency modalities were not showed significantly except several cases in groups of $5\times10^3$ cell per well. 3. In general, cell viability of cultured human gingival fibroblast wer not showed consistent feature by low level laser irradiation.

  • PDF

Effect of Fructus Ligustri Lucidi $H_2O$ Extract on Cell Proliferation in Hman Dermal Fibroblast (여정실 물 분획물이 인체 진피 섬유아세포의 증식에 미치는 영향)

  • Lim, Nan-Young;Kim, Dae-Sung;Ko, Kyung-Sook;Mun, Yeun-Ja;Woo, Won-Hong
    • Korean Journal of Acupuncture
    • /
    • v.28 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • Objectives : In this study, we investigated the effect of Fructus Ligustri Lucidi $H_2O$ fraction (FLLW) on cell proliferation, and the phosphorylation of ERKs and Akt in human dermal fibroblast neonatal (HDFn). Methods : After treatment of HDFn with FLLW, MTT assay was performed to quantitatively determine cellular viability. The ERK and Akt pathways were analyzed in vitro by Western blot in a HDFn. HDFn proliferation after FLLW and minoxidil treatment in the absence or presence of PD98059, a MEK inhibitor, LY294002, and a PI3K inhibitor, was examined by Western blot or MTT assay. Results : FLLW increased cell proliferation in a dose-dependent manner and minoxidil used as positive control also induced cell proliferation in HDFn. FLLW increased the phosphorylation of ERK and Akt. In addition, minoxidil, too, induced the phosphorylation of ERK and Akt in HDFn. PD98059 and LY294002 significantly attenuated FLLW-inducible p-ERK and p-Akt expression and proliferation in cultured HDFn. Conclusions : Our results suggest that FLLW stimulates the growth of fibroblast cells through ERK and Akt pathways. Therefore, FLLW is a potential agent for the inducer of fibroblast growth.

THE EFFECTS OF FIBRONECTIN & GROWTH FACTOR ALONE OR COMBINED APPLICATION ON THE ACTIVITY OF GHUMAN GINGIVAL FIBROBLASTS AND PERIODONTAL LIGAMENT CELLS (Fibronectin과 성장인자의 단독 혹은 복합투여가 배양 인체 치은섬유모세포 및 치은인대세포의 활성에 미치는 효과)

  • Kim, Eung-Tae;Han, Du-Seok;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.239-251
    • /
    • 1995
  • The selective migration, attachment and proliferation of periodontal ligament cells are the desired goal of periodontal regeneration therapy. Fibronectin is well known for an attachment protein for dentin surface. Also, Fibroblast growth factor (FGF) is well known to enhance the periodontal regeneration. The purpose of this study was to evaluation the effect of fibronection and FGF on the attachment rate and the cellular activity. Human gingival fibroblast and periodontal ligament cells were cultured from the teeth extracted for non-periodontal reson. Cultured human gingival fibroblast and periodontal ligament cells in vitro were treated with fibronectin and FGF a various dosage and culture times. Cellular activity was examined by MTT assay. The results of this study was demonstrated that cell attachment rate of experimental group was under the control value at 1st, 2nd, 3rd incubation day. But, at 3rd incubation day, attchment value tended to return to the control value. In case of fibronectin alone application, cellular activity was decreased than that of control at 1st, 2nd incubation day. But 3rd day, cellular activity was returned to the control value. The activity of gingival fibroblast in FGF alone application was decreased thatn that of control at each incubation day. But activity of periodontal cell group was increased cell activities at 2nd, 3rd day. Additionally cellular activity of fibronectin & FGF combined application on gingival fibroblast group was similar to control value at incubation day. But activity of periodontal ligament cell group was increased at 2nd, 3rd day compared with control group.This study demonstrated that combined application of fibronectin & FGF induced the selective chemotaxis for periodontal ligament cell in vitro.

  • PDF

The Effect of Hydrolyzed Jeju Ulva pertusa on the Proliferation and Type I Collagen Synthesis in Replicative Senescent Fibroblasts (제주 구멍갈파래 가수분해물에 의한 노화된 섬유아세포 증식 및 콜라겐 합성증진 효과)

  • Ko, Hyun Ju;Kim, Gyoung Bum;Lee, Dong Hwan;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.177-186
    • /
    • 2013
  • Skin dermal fibroblast is the major collagen-producing cell type in human skin. As aging process continues in human skin, collagen production is reduced and fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This imbalance of collagen homeostasis impairs the structure and function of dermal collagenous extracellular matrix (ECM), thereby promoting skin aging. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis in primary human skin dermal fibroblast cells. It is known in aging fibroblast cells that elevated CCN1 expression substantially reduces type I procollagen and concurrently increases MMP-1, which initiates fibrillar collagen degradation. And proliferation rate of aging fibroblast cells is reduced compared to the pre-aging fibroblast cells. In this study, we confirmed that the replicative senescence dermal fibroblast cells increased the expression levels of MMP-1 and decreased the production of type I procollagen. Our results also showed that the replicative senescence dermal fibroblast cells increased in the expression of CCN1 and decreased in the proliferation rate. Hydrolyzed Ulva pertusa extracts are the materials to improve photo-aging by reducing the expression of MMP-1 that was increased by ultraviolet and by promoting the synthesis of new collagen from fibroblast cells. In this study, we also investigated the hydrolyzed U. pertusa extract to see whether it inhibits CCN1 protein expression in the senescence fibroblasts. Results showed that the hydrolyzed U. pertusa extract inhibited the expression of MMP-1 and increased the production of type I procollagen in the aging skin fibroblast cells cultured. In addition, the proteins that regulate collagen homeostasis CCN1 expression were greatly reduced. The hydrolyzed U. pertusa extract increased the proliferation rate of the aging fibroblast cells. These results suggest that replicative senescent fibroblast cells may be used in the study of cosmetic ingredients as a model of the natural aging. In conclusion, the hydrolyzed U. pertusa extract can be used in anti-wrinkle functional cosmetic material to improve the natural aging skin care as well as photo-aging.

Tensile stress regulation of NGF and NT3 in human dermal fibroblast

  • Kim, Mi-Na;Hong, Jung-Woo;Nho, Min-Soo;Na, Yong-Joo;Shin, Jennifer Hyun-Jong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1585-1587
    • /
    • 2008
  • Fibroblast is constantly subjected to mechanical loads in connective tissues where mechanical signals are converted to intercellular biochemical events. The aim of this study is to understand the effects of tensile stress on the neurotrophin (NT) and transforming growth factor (TGF) expression of fibroblast in vitro. Nerve growth factor (NGF) stimulates fibroblast migration, and TGF is related to tissue repair. In this study, at the uniaxial stretch of 10% strain and frequency of 0.5 Hz, different resting times of 0, 20, and 60 min are placed in between 10 min stimulations periods. Results show increase in NGF mRNA levels and a substantial decrease in NT3 mRNA after 1 hr of stimulation, indicating that the tensile stress may regulate NGF and NT3, key factors for the neurocosmetic applications. The mRNA level for TGF-${\alpha}$ and TGF-${\beta}2$ had increased up to two-folds after 1 hr of stimulation, showing that the tensile stress may control TGF, an important part of wound healing.

  • PDF

Establishment of Immotalized Human Gingival Fibroblast Cell Lines (불멸화된 치은 섬유아 세포주의 확립)

  • Song, Jae-Bong;Kim, Hyun-A;Hyun, Ha-Na;Kim, Eun-Cheol;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.603-614
    • /
    • 2002
  • Human gingival fibroblasts have proven to useful as a species specific cell culture system in various system on periodontal disease and regeneration. However, their use is limited, since they are hard to obtain and lifespan is short due to replicative senescence. To overcome these disadvantages, we transfected primary human gingival fibroblasts by the E6 and E7 genes of the Human papilloma virus(HPV) 16. The full length of HPV 16 E6 and E7 was cloned from the pBR322 into BamHl and Sal I of a pBabe vector including hygromycin B resistance. Before pBabeE6/E7 plasmid transfection, peak 8 GFP including G418 resistance was transfected into primary GF to check the transfection efficency. PBabe E6/E7 plasmid was transfected using Lipofectamine plus following manufacter's instruction into primary normal human gingival fibroblasts in 60mm dishes with FBS free DMEM. After 2 days of transfection, the cells were treated with hygromycin for 2 weeks until the transfected control cells died. The resulting hygromycin resistant colonies were pooled, and clonned, and sucessful transfection was established for immortalized gingival fibroblast cell lines. Immoralized GF cells showed stellate shape, that is similar to that of orange grains, and more rapid growth and higher proliferation than that of primary gingival fibroblasts. This cell lines overcame crisis and could be cultured over 30 subcultured, could be use for three dimentional culture, epithelial-mesenchymal interaction study.