• 제목/요약/키워드: Human Embryonic Stem Cells

검색결과 235건 처리시간 0.017초

Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes

  • Park, Misun;Yoon, Young-sup
    • Korean Circulation Journal
    • /
    • 제48권11호
    • /
    • pp.974-988
    • /
    • 2018
  • Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are collectively called pluripotent stem cells (PSCs), have emerged as a promising source for regenerative medicine. Particularly, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown robust potential for regenerating injured heart. Over the past two decades, protocols to differentiate hPSCs into CMs at high efficiency have been developed, opening the door for clinical application. Studies further demonstrated therapeutic effects of hPSC-CMs in small and large animal models and the underlying mechanisms of cardiac repair. However, gaps remain in explanations of the therapeutic effects of engrafted hPSC-CMs. In addition, bioengineering technologies improved survival and therapeutic effects of hPSC-CMs in vivo. While most of the original concerns associated with the use of hPSCs have been addressed, several issues remain to be resolved such as immaturity of transplanted cells, lack of electrical integration leading to arrhythmogenic risk, and tumorigenicity. Cell therapy with hPSC-CMs has shown great potential for biological therapy of injured heart; however, more studies are needed to ensure the therapeutic effects, underlying mechanisms, and safety, before this technology can be applied clinically.

The Effect of Polysaccharide from Angelica Gigas Nakai on Controlling the Differentiation of Human Embryonic Stem Cells

  • Park, Young-S.;Lee, Jae-E.;Lee, Seo-H.;Lee, Hyeon-Y.
    • 한국약용작물학회지
    • /
    • 제10권4호
    • /
    • pp.237-242
    • /
    • 2002
  • It was found that the purified extract from A. gigas Nakai (polysaccharide, M.W., 25 kD) controled differentiating human ES cells. Its optimal supplementation concentration was decided as 0.8 $({\mu}g/ml)$ to efficiently control the differentiation. It also enhanced the cell growth, compared to the control. However, most widely used and commercially available differentiating agent, Leukemia Inhibitory Factor (LIF) negatively affected on the cell growth even though it controls the differentiation of ES cells, down to 40-50 % based on morphological observation and telomerase activity. It was presumed that the extract first affected on cell membrane and resulted in controlling signal system, then amplify gene expression of telomere, which enhanced the telomerase activity up to three times compared to the control. LIF only increased the enzyme activity up to two times. It was confirmed that the extract from A. gigas Nakai could be used for substituting currently used differentiation controlling agent, LIF from animal resources as a cheap plant resource and not affecting the cell growth. It can broaden the application of the plants not only to functional foods and their substitutes but also to fine chemicals and most cutting-edge biopharmaceutical medicine.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • 제54권10호
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Generation of Embryonic Stem Cell-derived Transgenic Mice by Using Tetraploid Complementation

  • Park, S.M.;Song, S.J.;Uhm, S.J.;Cho, S.G.;Park, S.P.;Lim, J.H.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권12호
    • /
    • pp.1641-1646
    • /
    • 2004
  • The objective of this study was to generate transgenic mice expressing human resistin gene by using the tetraploidembryonic stem (ES) cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR, cloned into $pCR^{(R)}$ 2.1 $TOPO^{(R)}$ vector and constructed in pCMV-Tag4C vector. Mammalian expression plasmid containing human resistin was transfected into D3-GL ES cells by Lipofectamine 2,000, and then after 10-12 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec (fusion rate: 2,114/2,256, 93.5%) and cultured up to the blastocyst stage (development rate: 1,862/2,114, 94.6%). The selected 15-20 ES cells were injected into tetraploid blastocysts, and then transferred into the uteri of E 2.5 d pseudopregnant recipient mice. To investigate the gestation progress, two E 19.5 mused fetuses were recovered by Cesarean section of which one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, our findings demonstrate that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mice for the rapid analysis of gene function in vivo.