DOI QR코드

DOI QR Code

Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes

  • Park, Misun (Biomedical Science Institute, Yonsei University College of Medicine) ;
  • Yoon, Young-sup (Biomedical Science Institute, Yonsei University College of Medicine)
  • Received : 2018.09.07
  • Accepted : 2018.09.27
  • Published : 2018.11.30

Abstract

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are collectively called pluripotent stem cells (PSCs), have emerged as a promising source for regenerative medicine. Particularly, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown robust potential for regenerating injured heart. Over the past two decades, protocols to differentiate hPSCs into CMs at high efficiency have been developed, opening the door for clinical application. Studies further demonstrated therapeutic effects of hPSC-CMs in small and large animal models and the underlying mechanisms of cardiac repair. However, gaps remain in explanations of the therapeutic effects of engrafted hPSC-CMs. In addition, bioengineering technologies improved survival and therapeutic effects of hPSC-CMs in vivo. While most of the original concerns associated with the use of hPSCs have been addressed, several issues remain to be resolved such as immaturity of transplanted cells, lack of electrical integration leading to arrhythmogenic risk, and tumorigenicity. Cell therapy with hPSC-CMs has shown great potential for biological therapy of injured heart; however, more studies are needed to ensure the therapeutic effects, underlying mechanisms, and safety, before this technology can be applied clinically.

Keywords

Acknowledgement

Supported by : Korea National Research Foundation (NRF), Korea Health Industry Development Institute (KHIDI), NHLBI, NIDDK, NIH

References

  1. World Health Organization. Global health estimates: deaths by cause, age, sex and country, 2000-2012. Geneva: World Health Organization; 2014.
  2. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 2018;137:e67-492.
  3. Makikallio T, Holm NR, Lindsay M, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet 2016;388:2743-52. https://doi.org/10.1016/S0140-6736(16)32052-9
  4. Stone GW, Sabik JF, Serruys PW, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med 2016;375:2223-35. https://doi.org/10.1056/NEJMoa1610227
  5. Tonsho M, Michel S, Ahmed Z, Alessandrini A, Madsen JC. Heart transplantation: challenges facing the field. Cold Spring Harb Perspect Med 2014;4:a015636. https://doi.org/10.1101/cshperspect.a015636
  6. Eschenhagen T, Bolli R, Braun T, et al. Cardiomyocyte regeneration: a consensus statement. Circulation 2017;136:680-6. https://doi.org/10.1161/CIRCULATIONAHA.117.029343
  7. Bergmann O, Zdunek S, Felker A, et al. Dynamics of cell generation and turnover in the human heart. Cell 2015;161:1566-75. https://doi.org/10.1016/j.cell.2015.05.026
  8. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-8. https://doi.org/10.1161/01.CIR.0000034046.87607.1C
  9. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294-302. https://doi.org/10.1161/01.CIR.0000070596.30552.8B
  10. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141-8. https://doi.org/10.1016/S0140-6736(04)16626-9
  11. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199-209. https://doi.org/10.1056/NEJMoa055706
  12. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210-21. https://doi.org/10.1056/NEJMoa060186
  13. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006;367:113-21. https://doi.org/10.1016/S0140-6736(05)67861-0
  14. Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 2012;307:1717-26.
  15. Surder D, Manka R, Lo Cicero V, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation 2013;127:1968-79. https://doi.org/10.1161/CIRCULATIONAHA.112.001035
  16. Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial. Eur Heart J 2016;37:256-63. https://doi.org/10.1093/eurheartj/ehv493
  17. Karantalis V, DiFede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 2014;114:1302-10. https://doi.org/10.1161/CIRCRESAHA.114.303180
  18. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-86. https://doi.org/10.1016/j.jacc.2009.06.055
  19. Menasche P, Vanneaux V, Hagege A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 2015;36:2011-7. https://doi.org/10.1093/eurheartj/ehv189
  20. Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 2017;16:699-717. https://doi.org/10.1038/nrd.2017.106
  21. Ziegelhoeffer T, Fernandez B, Kostin S, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004;94:230-8. https://doi.org/10.1161/01.RES.0000110419.50982.1C
  22. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 2005;102:11474-9. https://doi.org/10.1073/pnas.0504388102
  23. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005;11:367-8. https://doi.org/10.1038/nm0405-367
  24. Cho HJ, Lee N, Lee JY, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 2007;204:3257-69. https://doi.org/10.1084/jem.20070166
  25. Weis S, Shintani S, Weber A, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 2004;113:885-94. https://doi.org/10.1172/JCI200420702
  26. Nguyen PK, Rhee JW, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol 2016;1:831-41. https://doi.org/10.1001/jamacardio.2016.2225
  27. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154-6. https://doi.org/10.1038/292154a0
  28. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7. https://doi.org/10.1126/science.282.5391.1145
  29. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015-24. https://doi.org/10.1038/nbt1327
  30. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 2007;21:1345-57. https://doi.org/10.1096/fj.06-6769com
  31. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. https://doi.org/10.1016/j.cell.2007.11.019
  32. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
  33. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55-70. https://doi.org/10.1016/j.stem.2007.05.014
  34. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  35. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797-801. https://doi.org/10.1126/science.1172482
  36. Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011;8:409-12. https://doi.org/10.1038/nmeth.1591
  37. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-9. https://doi.org/10.1126/science.1162494
  38. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad, Ser B, Phys Biol Sci 2009;85:348-62. https://doi.org/10.2183/pjab.85.348
  39. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7:618-30. https://doi.org/10.1016/j.stem.2010.08.012
  40. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407-14. https://doi.org/10.1172/JCI200112131
  41. Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009;104:e30-41.
  42. Zwi L, Caspi O, Arbel G, et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 2009;120:1513-23. https://doi.org/10.1161/CIRCULATIONAHA.109.868885
  43. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002;91:501-8. https://doi.org/10.1161/01.RES.0000035254.80718.91
  44. Pesl M, Acimovic I, Pribyl J, et al. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessels 2014;29:834-46. https://doi.org/10.1007/s00380-013-0436-9
  45. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003;107:2733-40. https://doi.org/10.1161/01.CIR.0000068356.38592.68
  46. Graichen R, Xu X, Braam SR, et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 2008;76:357-70. https://doi.org/10.1111/j.1432-0436.2007.00236.x
  47. Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One 2010;5:e11134. https://doi.org/10.1371/journal.pone.0011134
  48. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 2008;135:2969-79. https://doi.org/10.1242/dev.021121
  49. Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008;453:524-8. https://doi.org/10.1038/nature06894
  50. Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 2012;109:E1848-57. https://doi.org/10.1073/pnas.1200250109
  51. Gadue P, Huber TL, Paddison PJ, Keller GM. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 2006;103:16806-11. https://doi.org/10.1073/pnas.0603916103
  52. Lindsley RC, Gill JG, Kyba M, Murphy TL, Murphy KM. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 2006;133:3787-96. https://doi.org/10.1242/dev.02551
  53. Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 2007;104:9685-90. https://doi.org/10.1073/pnas.0702859104
  54. Naito AT, Shiojima I, Akazawa H, et al. Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A 2006;103:19812-7. https://doi.org/10.1073/pnas.0605768103
  55. Zhang J, Klos M, Wilson GF, et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 2012;111:1125-36. https://doi.org/10.1161/CIRCRESAHA.112.273144
  56. Moon SH, Ban K, Kim C, et al. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol 2013;168:41-52. https://doi.org/10.1016/j.ijcard.2012.09.077
  57. Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855-60. https://doi.org/10.1038/nmeth.2999
  58. Ban K, Bae S, Yoon YS. Current strategies and challenges for purification of cardiomyocytes derived from human pluripotent stem cells. Theranostics 2017;7:2067-77. https://doi.org/10.7150/thno.19427
  59. Ritner C, Wong SS, King FW, et al. An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS One 2011;6:e16004. https://doi.org/10.1371/journal.pone.0016004
  60. Uosaki H, Fukushima H, Takeuchi A, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011;6:e23657. https://doi.org/10.1371/journal.pone.0023657
  61. Hattori F, Chen H, Yamashita H, et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 2010;7:61-6. https://doi.org/10.1038/nmeth.1403
  62. Tohyama S, Fujita J, Hishiki T, et al. Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 2016;23:663-74. https://doi.org/10.1016/j.cmet.2016.03.001
  63. Ban K, Wile B, Kim S, et al. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 2013;128:1897-909. https://doi.org/10.1161/CIRCULATIONAHA.113.004228
  64. Miki K, Endo K, Takahashi S, et al. Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell 2015;16:699-711. https://doi.org/10.1016/j.stem.2015.04.005
  65. Li X, Yu L, Li J, et al. On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure. Biofabrication 2016;8:035017. https://doi.org/10.1088/1758-5090/8/3/035017
  66. Protze SI, Liu J, Nussinovitch U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 2017;35:56-68. https://doi.org/10.1038/nbt.3745
  67. Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 2017;21:179-94. https://doi.org/10.1016/j.stem.2017.07.003
  68. van Laake LW, Passier R, Monshouwer-Kloots J, et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res (Amst) 2007;1:9-24. https://doi.org/10.1016/j.scr.2007.06.001
  69. Caspi O, Huber I, Kehat I, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 2007;50:1884-93. https://doi.org/10.1016/j.jacc.2007.07.054
  70. Ye L, Chang YH, Xiong Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 2014;15:750-61. https://doi.org/10.1016/j.stem.2014.11.009
  71. Kawamura M, Miyagawa S, Miki K, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 2012;126:S29-37. https://doi.org/10.1161/CIRCULATIONAHA.111.084343
  72. Shiba Y, Fernandes S, Zhu WZ, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012;489:322-5. https://doi.org/10.1038/nature11317
  73. Fernandes S, Naumova AV, Zhu WZ, Laflamme MA, Gold J, Murry CE. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J Mol Cell Cardiol 2010;49:941-9. https://doi.org/10.1016/j.yjmcc.2010.09.008
  74. Shiba Y, Filice D, Fernandes S, et al. Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther 2014;19:368-81. https://doi.org/10.1177/1074248413520344
  75. van Laake LW, Passier R, Doevendans PA, Mummery CL. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 2008;102:1008-10. https://doi.org/10.1161/CIRCRESAHA.108.175505
  76. Hong SG, Lin Y, Dunbar CE, Zou J. The role of nonhuman primate animal models in the clinical development of pluripotent stem cell therapies. Mol Ther 2016;24:1165-9. https://doi.org/10.1038/mt.2016.131
  77. Hong SG, Winkler T, Wu C, et al. Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Reports 2014;7:1298-309. https://doi.org/10.1016/j.celrep.2014.04.019
  78. Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014;510:273-7. https://doi.org/10.1038/nature13233
  79. Anderson ME, Goldhaber J, Houser SR, Puceat M, Sussman MA. Embryonic stem cell-derived cardiac myocytes are not ready for human trials. Circ Res 2014;115:335-8. https://doi.org/10.1161/CIRCRESAHA.114.304616
  80. Liu YW, Chen B, Yang X, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 2018;36:597-605. https://doi.org/10.1038/nbt.4162
  81. Zhu K, Wu Q, Ni C, et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ Res 2018;122:958-69. https://doi.org/10.1161/CIRCRESAHA.117.311578
  82. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907-21. https://doi.org/10.1006/jmcc.2001.1367
  83. Dow J, Simkhovich BZ, Kedes L, Kloner RA. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res 2005;67:301-7. https://doi.org/10.1016/j.cardiores.2005.04.011
  84. Nguyen PK, Neofytou E, Rhee JW, Wu JC. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol 2016;1:953-62. https://doi.org/10.1001/jamacardio.2016.2750
  85. Ong SG, Huber BC, Lee WH, et al. Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell-derived cardiomyocytes after acute myocardial infarction. Circulation 2015;132:762-71. https://doi.org/10.1161/CIRCULATIONAHA.114.015231
  86. Hernandez MJ, Christman KL. Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease. JACC Basic Transl Sci 2017;2:212-26. https://doi.org/10.1016/j.jacbts.2016.11.008
  87. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 2004;44:654-60. https://doi.org/10.1016/j.jacc.2004.04.040
  88. Marquardt LM, Heilshorn SC. Design of injectable materials to improve stem cell transplantation. Curr Stem Cell Rep 2016;2:207-20. https://doi.org/10.1007/s40778-016-0058-0
  89. Ban K, Park HJ, Kim S, et al. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS Nano 2014;8:10815-25. https://doi.org/10.1021/nn504617g
  90. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 2010;5:469-84. https://doi.org/10.2217/nnm.10.12
  91. Freytes DO, O'Neill JD, Duan-Arnold Y, Wrona EA, Vunjak-Novakovic G. Natural cardiac extracellular matrix hydrogels for cultivation of human stem cell-derived cardiomyocytes. Methods Mol Biol 2014;1181:69-81.
  92. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M. A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 2012;8:1022-36. https://doi.org/10.1016/j.actbio.2011.11.030
  93. Lu WN, Lu SH, Wang HB, et al. Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 2009;15:1437-47. https://doi.org/10.1089/ten.tea.2008.0143
  94. Landa N, Miller L, Feinberg MS, et al. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008;117:1388-96. https://doi.org/10.1161/CIRCULATIONAHA.107.727420
  95. Chow A, Stuckey DJ, Kidher E, et al. Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Reports 2017;9:1415-22. https://doi.org/10.1016/j.stemcr.2017.09.003
  96. Rane AA, Chuang JS, Shah A, et al. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS One 2011;6:e21571. https://doi.org/10.1371/journal.pone.0021571
  97. McGarvey JR, Pettaway S, Shuman JA, et al. Targeted injection of a biocomposite material alters macrophage and fibroblast phenotype and function following myocardial infarction: relation to left ventricular remodeling. J Pharmacol Exp Ther 2014;350:701-9. https://doi.org/10.1124/jpet.114.215798
  98. Seif-Naraghi SB, Singelyn JM, Salvatore MA, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med 2013;5:173ra25. https://doi.org/10.1126/scitranslmed.3005503
  99. Ribeiro AJ, Ang YS, Fu JD, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A 2015;112:12705-10. https://doi.org/10.1073/pnas.1508073112
  100. Riegler J, Tiburcy M, Ebert A, et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ Res 2015;117:720-30. https://doi.org/10.1161/CIRCRESAHA.115.306985
  101. Weinberger F, Breckwoldt K, Pecha S, et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 2016;8:363ra148. https://doi.org/10.1126/scitranslmed.aaf8781
  102. Gao L, Gregorich ZR, Zhu W, et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 2018;137:1712-30. https://doi.org/10.1161/CIRCULATIONAHA.117.030785
  103. Shadrin IY, Allen BW, Qian Y, et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 2017;8:1825. https://doi.org/10.1038/s41467-017-01946-x
  104. Kawamura M, Miyagawa S, Fukushima S, et al. Enhanced therapeutic effects of human iPS cell derived-cardiomyocyte by combined cell-sheets with omental flap technique in porcine ischemic cardiomyopathy model. Sci Rep 2017;7:8824. https://doi.org/10.1038/s41598-017-08869-z
  105. Masumoto H, Ikuno T, Takeda M, et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 2014;4:6716.
  106. Tzatzalos E, Abilez OJ, Shukla P, Wu JC. Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev 2016;96:234-44. https://doi.org/10.1016/j.addr.2015.09.010
  107. Gao L, Kupfer ME, Jung JP, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res 2017;120:1318-25. https://doi.org/10.1161/CIRCRESAHA.116.310277
  108. Feaster TK, Cadar AG, Wang L, et al. Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 2015;117:995-1000. https://doi.org/10.1161/CIRCRESAHA.115.307580
  109. Ogasawara T, Okano S, Ichimura H, et al. Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Sci Rep 2017;7:8630. https://doi.org/10.1038/s41598-017-09217-x
  110. Higuchi T, Miyagawa S, Pearson JT, et al. Functional and electrical integration of induced pluripotent stem cell-derived cardiomyocytes in a myocardial infarction rat heart. Cell Transplant 2015;24:2479-89. https://doi.org/10.3727/096368914X685799
  111. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003;93:32-9. https://doi.org/10.1161/01.RES.0000080317.92718.99
  112. Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 2010;107:776-86. https://doi.org/10.1161/CIRCRESAHA.110.223917
  113. Kamakura T, Makiyama T, Sasaki K, et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J 2013;77:1307-14. https://doi.org/10.1253/circj.CJ-12-0987
  114. Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013;12:127-37. https://doi.org/10.1016/j.stem.2012.09.013
  115. Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 2014;114:511-23. https://doi.org/10.1161/CIRCRESAHA.114.300558
  116. Ivashchenko CY, Pipes GC, Lozinskaya IM, et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am J Physiol Heart Circ Physiol 2013;305:H913-22. https://doi.org/10.1152/ajpheart.00819.2012
  117. Nunes SS, Miklas JW, Liu J, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 2013;10:781-7. https://doi.org/10.1038/nmeth.2524
  118. Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M. Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 2015;24:1035-52. https://doi.org/10.1089/scd.2014.0533
  119. Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ. Excitation-contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 2010;48:379-86. https://doi.org/10.1016/j.yjmcc.2009.09.016
  120. Lieu DK, Liu J, Siu CW, et al. Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev 2009;18:1493-500. https://doi.org/10.1089/scd.2009.0052
  121. Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 2013;22:1991-2002. https://doi.org/10.1089/scd.2012.0490
  122. Kuppusamy KT, Jones DC, Sperber H, et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A 2015;112:E2785-94. https://doi.org/10.1073/pnas.1424042112
  123. Fu JD, Rushing SN, Lieu DK, et al. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 2011;6:e27417. https://doi.org/10.1371/journal.pone.0027417
  124. Guyette JP, Charest JM, Mills RW, et al. Bioengineering human myocardium on native extracellular matrix. Circ Res 2016;118:56-72. https://doi.org/10.1161/CIRCRESAHA.115.306874
  125. Fong AH, Romero-Lopez M, Heylman CM, et al. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes. Tissue Eng Part A 2016;22:1016-25. https://doi.org/10.1089/ten.tea.2016.0027
  126. Kadota S, Pabon L, Reinecke H, Murry CE. In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Reports 2017;8:278-89. https://doi.org/10.1016/j.stemcr.2016.10.009
  127. Gerbin KA, Murry CE. The winding road to regenerating the human heart. Cardiovasc Pathol 2015;24:133-40. https://doi.org/10.1016/j.carpath.2015.02.004
  128. Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 1999;100:193-202. https://doi.org/10.1161/01.CIR.100.2.193
  129. Zhang YM, Hartzell C, Narlow M, Dudley SC Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 2002;106:1294-9. https://doi.org/10.1161/01.CIR.0000027585.05868.67
  130. Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 2016;538:388-91. https://doi.org/10.1038/nature19815
  131. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010;28:1568-70. https://doi.org/10.1002/stem.471
  132. Lee SJ, Sohn YD, Andukuri A, et al. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix gel. Circulation 2017;136:1939-54. https://doi.org/10.1161/CIRCULATIONAHA.116.026329
  133. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH. Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol 2012;30:849-57. https://doi.org/10.1038/nbt.2329

Cited by

  1. Stem cell activity in the repair of cardiovascular tissues vol.4, pp.3, 2018, https://doi.org/10.21931/rb/2019.04.03.13
  2. Scalable Biomimetic Coaxial Aligned Nanofiber Cardiac Patch: A Potential Model for “Clinical Trials in a Dish” vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.567842
  3. Stem Cell Therapy of Myocardial Infarction: A Promising Opportunity in Bioengineering vol.3, pp.3, 2018, https://doi.org/10.1002/adtp.201900182