• 제목/요약/키워드: Human Bronchial Epithelial Cell

검색결과 32건 처리시간 0.025초

連翹敗毒散이 사람 기관지 상피세포의 TARC 분비에 미치는 효과 (Effect of Youn-Gyo-Pae-Doc-San on the Release of Thymus and Activation-Regulated Chemokine(TARC) in Human Bronchial Epithelial Cell)

  • 이경엽;김희택;김이화;남창규;류주현
    • 한방안이비인후피부과학회지
    • /
    • 제16권3호
    • /
    • pp.82-95
    • /
    • 2003
  • Chemokines are important for the recruitment of leukocytes to sites of infection, which is essential in host defense. The thymus and activation-regulated chemokine (TARC) is a CC chemokine which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Objectives : The objective of this study is to investigate the effect of Youn-Gyo-Pae-Doc-San on the secretion of TARC of human bronchial epithelial cell Methods : Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of TARC. The cytotoxicity was measured by MTT assay. Results : Youn-Gyo-Pae-Doc-San significantly inhibited the secretion of TARC with a dose -dependant manner. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell. Conclusions : Results of our study show that Youn-Gyo-Pae-Doc-San would play an important role in modulation of TARC in human bronchial epithelial cells.

  • PDF

마황(麻黃) 약침액(藥鍼液)이 사람 기관지 상피세포의 TARC 분비에 미치는 효과 (Effect of Ephedrae Herbal Acupuncture Solution(EHS) on the Release of Thymus and Activation-Regulated Chemokine (TARC) in Human Bronchial Epithelial Cell)

  • 주유적;서정철;임성철;정태영;한상원
    • Korean Journal of Acupuncture
    • /
    • 제22권1호
    • /
    • pp.23-32
    • /
    • 2005
  • Chemokines are important for the recruitment of leukocytes, which is essential in host defense to the sites of infection. The thymus and activation-regulated chemokine (TARC) is a CC chemokine which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Objectives : The objective of this study is to investigate the effect of Ephedrae Herba Herbal Acupuncture Solution(EHS) on the secretion of TARC of human bronchial epithelial cell. Methods : Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of TARC. The cytotoxicity was measured by MTT assay. Results : EHS significantly inhibited the secretion of TARC with a dose-dependant manner. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell. Conclusion : Results of our study imply that EHS would play an important role in modulation of TARC in human bronchial epithelial cells by MTT assay.

  • PDF

황금이 A549 세포주에서 $TNF-{\alpha}$ 및 IL-4로 유도된 chemokines에 미치는 영향 (Effect of Scutellariae Radix Extract on the release of chemokines induced by $TNF-{\alpha}$ and IL-4 in A549 cells)

  • 김성호;김희택
    • 한방안이비인후피부과학회지
    • /
    • 제20권2호통권33호
    • /
    • pp.108-115
    • /
    • 2007
  • Objectives : In the present study, the effect of Scutellariae radix on the release of RANTES, eotaxin, TARC induced by $TNF-{\alpha}$ and IL-4 in human bronchial epithelial cell(A549 cell) was examined. Scutellariae radix significantly inhibited the secretion of RANTES, eotaxin, TARC with a dose-dependant manner. Methods : In the experiment, to observe the toxity of the cell according to concentration of Scutellariae radix, MIT assay was carried out to examine cell viability. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell in all control group excepting 50\;{\mu}g/ml$ concentration. Results : The above results shows Scutellariae radix inhibits the secretion of the release of RANTES, eotaxin, TARC on human bronchial epithelial cell(A549 cell). Conclusion : These results suggest that Scutellariae radix could be used as a prophylaxis and remedy of asthma induced by allergy and inflammatory reaction caused by several reasons.

  • PDF

Effects of Antioxidant on Oxidative Stress and Autophagy in Bronchial Epithelial Cells Exposed to Particulate Matter and Cigarette Smoke Extract

  • Hur, Jung;Rhee, Chin Kook;Jo, Yong Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권3호
    • /
    • pp.237-248
    • /
    • 2022
  • Background: We evaluated the effect of particulate matter (PM) and cigarette smoke extract (CSE) on bronchial epithelial cell survival, as well as oxidative stress and autophagy levels. Moreover, we aimed to assess the effect of the antioxidant N-acetylcysteine (NAC) on the adverse effects of PM and CSE exposure. Methods: Normal human bronchial epithelial cells (BEAS-2B cells) were exposed to urban PM with or without CSE, after which cytotoxic effects, including oxidative stress and autophagy levels, were measured. After identifying the toxic effects of urban PM and CSE exposure, the effects of NAC treatment on cell damage were evaluated. Results: Urban PM significantly decreased cell viability in a concentration-dependent manner, which was further aggravated by simultaneous treatment with CSE. Notably, pretreatment with NAC at 10 mM for 1 hour reversed the cytotoxic effects of PM and CSE co-exposure. Treatment with 1, 5, and 10 mM NAC was shown to decrease reactive oxygen species levels induced by exposure to both PM and CSE. Additionally, the autophagy response assessed via LC3B expression was increased by PM and CSE exposure, and this also attenuated by NAC treatment. Conclusion: The toxic effects of PM and CSE co-exposure on human bronchial epithelial cells, including decreased cell viability and increased oxidative stress and autophagy levels, could be partly prevented by NAC treatment.

Naringenin Exerts Cytoprotective Effect Against Paraquat-Induced Toxicity in Human Bronchial Epithelial BEAS-2B Cells Through NRF2 Activation

  • Podder, Biswajit;Song, Ho-Yeon;Kim, Yong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.605-613
    • /
    • 2014
  • We have previously shown that paraquat (PQ)-induced oxidative stress causes dramatic damage in various human cell lines. Naringenin (NG) is an active flavanone, which has been reported to have beneficial bioactivities, including antioxidative, anti-inflammatory, and antitumorigenic activities, with a relatively low toxicity to normal cells. In this study, we intended to assess the cytoprotective effect of NG against PQ-induced toxicity in the human bronchial epithelial BEAS-2B cell line. Co-treatment with NG in PQ-treated BEAS-2B cells can reduce PQ-induced cellular toxicity. NG can also decrease the generation of intracellular ROS caused by PQ treatment. We also observed that treatment with NG in PQ-exposed BEAS-2B cells can significantly induce the expression of antioxidant-related genes, including GPX2, GPX3, GPX5, and GPX7. NG co-treatment can also activate the NRF2 transcription factor and promote its nuclear translocation. In addition, NG co-treatment can induce the expression of NRF2-downstream target genes such as that of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). A small interfering RNA study revealed that the knockdown of NRF2 can abrogate NG-mediated protection of the cells from PQ-induced cellular toxicity. We propose that NG effectively alleviates PQ-induced cytotoxicity in human bronchial epithelial BEAS-2B cells through the NRF2-regulated antioxidant defense pathway, and NG might be a good therapeutic candidate molecule in oxidative stress-related diseases.

Cytokines Stimulate Lung Epithelial Cells to Release Nitric Oxide

  • Robbins, Richard A.;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제42권4호
    • /
    • pp.447-454
    • /
    • 1995
  • Cytokine release from alveolar macrophages and subsequent interaction of these cytokines with the bronchial epithelium can induce epithelial cells to release inflammatory mediators. Nitric oxide(NO), a highly reactive gas formed from arginine by nitric oxide synthase(NOS), is known to be involved in inflammation and edema formation, and the inducible form of NOS(iNOS) can be increased by cytokines. In this context, we hypothesized that lung epithelial cells could be stimulated by cytokines released by alveolar macrophages to express iNOS. To test this hypothesis, the murine lung epithelial cell line, LA-4, or the human lung epithelial cell line, A549, were stimulated with culture supernatant fluids from alveolar macrophages. NO production was assessed by evaluating the culture supernatant fluids for nitrite and nitrate, the stable end products of NO. Both murine and human cell culture supernatant fluids demonstrated an increase in nitrite and nitrate which were time- and dose-dependent and attenuated by $TNF{\alpha}$ and IL-$1{\beta}$ antibodies(p<0.05, all comparisons). Consistent with these observations, cytomix a combination of $TNF{\alpha}$, IL-$1{\beta}$, and $\gamma$-interferon, stimulated the lung epithelial cell lines as well as primary cultures of human bronchial epithelial cells to increase their NO production as evidenced by an increase in nitrite and nitrate in their culture supernatant fluids, an increase in the iNOS staining by immunocytochemistry, and an increase in iNOS mRNA by Northern blottin(p<0.05, all comparisons). The cytokine effects on iNOS were all attenuated by dexamethasone. To determine if these in vitro observations are reflected in vivo, exhaled NO was measured and found to be increased in asthmatics not receiving corticosteroids. These data demonstrate that alveolar macrophage derived cytokines increase iNOS expression in lung epithelial cells and that these in vitro observations are mirrored by increased exhaled NO levels in asthmatics. Increased NO in the lung may contribute to edema formation and airway narrowing.

  • PDF

반하(半夏) 약침액(藥鍼液)이 사람 기관지 상피세포의 TARC 분비에 미치는 효과 (Effect of Pinelliae Rhizoma Herbal Acupuncture on the Release of Thymus and Activation-Regulated Chemokine(TARC) in Human Bronchial Epithelial Cell)

  • 홍재화;서정철;임성철;정태영;한상원
    • Journal of Acupuncture Research
    • /
    • 제22권1호
    • /
    • pp.155-164
    • /
    • 2005
  • 사람 기관지 상피세포에 알러지 환경을 유발 하고자 사이토카인을 처리하여 TARC의 분비를 유도하고, 이 케모카인 분비에 반하(半夏) 약쇄액(藥鎖液)이 미치는 효과를 실험한 결과 다음과 같은 결론을 얻었다. 1. 사람의 기관지 상피 세포주에 각각 IL-4, TNF-${\alpha}$, IFN-${\gamma}$ 및 IL-$1{\beta}$를 처리하는 경우와 IL-4와 TNF-${\alpha}$, INF-${\alpha}$와 IFN-${\gamma}$, IFN-${\gamma}$와 IL-$1{\beta}$를 병용 처리할 경우 TARC의 분비량를 측정한 결과 IL-4와 TNF-${\alpha}$와 TNF-${\alpha}$와 IFN-${\gamma}$를 병용 처리하였을 경우 TARC의 분비량이 유의하게 증가하였다. 2. 반하(半夏) 약쇄액(藥鎖液) 처리군의 24시간 및 48시간에서 통계적으로 유의한 감소를 관찰할 수 있었다. 3. 반하(半夏) 약쇄액(藥鎖液)에 의한 TARC 분비억제를 관찰 한 결과 농도의존적인 분비 감소 효과를 관찰 할 수 있었다. 4. MTT assay법을 이용한 세포 독성 측정에선 대조군과 반하(半夏) 약침액(藥鍼液) 처리군간에 유의성이 없었으므로 50, 100 및 200${\mu}g/m{\ell}$의 농도에선 세포독성이 없었음을 관찰할 수 있었다. 이에 반하(半夏) 약광액(藥鑛液)은 TARC 케모카인 억제를 통해 천식에 대한 치료효과를 나타낼 수 있을 것으로 사려된다.

  • PDF

Gene Expression Profiling of Human Bronchial Epithelial (BEAS-2B) Cells Treated with Nitrofurantoin, a Pulmonary Toxicant

  • Kim, Youn-Jung;Song, Mee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.222-230
    • /
    • 2007
  • Some drugs may be limited in their clinical application due to their propensity towards their adverse effects. Toxicogenomic technology represents a useful approach for evaluating the toxic properties of new drug candidates early in the drug discovery process. Nitrofurantoin (NF) is clinical chemotherapeutic agent and antimicrobial and used to treatment of urinary tract infections. However, NF has been shown to result in pulmonary toxic effects. In this research, we revealed the changing expression gene profiles in BEAS-2B, human bronchial epithelial cell line, exposed to NF by using human oligonucleotide chip. Through the clustering analysis of gene expression profiles, we identified 136 up-regulated genes and 379 down-regulated genes changed by more than 2-fold by NF. This study identifies several interesting targets and functions in relation to NF-induced toxicity through a gene ontology analysis method including biological process, cellular components, molecular function and KEGG pathway.

Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells

  • Gweon, Bomi;Jang, Tae-Kyu;Thuy, Pham Xuan;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.170-178
    • /
    • 2022
  • The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.

배양 기관지 상피세포(BEAS-2B cells)에서 6가 크롬에 의한 산화적 스트레스 (Induction of Oxidative Stress by Hexavalent Chromium in Human Bronchial Epithelial Cells (BEAS-2B))

  • 박은정;강미선;김대선;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권4호
    • /
    • pp.357-363
    • /
    • 2006
  • Chromium compounds are widely used in diverse industries including pigment manufacturing, painting, metal plating and leather tanning. With the wide uses of chromium, various adverse effects of the compounds on the environment and human health have been reported. Among them, hexavalent chromium [Cr (VI)], which is a carcinogenic heavy metal, has been widely studies. Epidemiological investigations have shown that respiratory cancers had been found in workers who had been occupationally exposed to Cr (VI). In this study, cell toxicity and induction of reactive oxygen species (ROS) by Cr (VI) (1, 2, 4, $8{\mu}M$) in cultured human bronchial epithelial cells were investigated. Exposure of the cells to Cr (VI) led to cell death, ROS increase, and cytosolic caspase-3 activation. The ROS increase was related with the decreased level of GSH. Chromatin condensation and fragmentation were occurred by Cr (VI) when evaluated by DAPI staining or agarose gel electrophoresis of the extracted DNA. Expression of ROS related genes including glutathione S-transferase, heme oxygenase-1, metallothionein were significantly induced in Cr (VI) treated cells. This result suggests the toxicity in cultured cells by Cr (VI) was expressed through the apoptotic process with ROS induction.