• Title/Summary/Keyword: Human/System Interface

Search Result 783, Processing Time 0.028 seconds

The Human Vehicle Interface System for Integrating and Managing the In-Vehicle Interactions with IT Devices

  • Choi, Jong-Woo;Park, Hye-Sun;Kim, Kyong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.651-657
    • /
    • 2011
  • Objective: The aim of this study is to investigate the system to integrate and manage the in-vehicle interactions between the drivers and the in-vehicle mobile IT devices. Background: As the mobile IT technology is being used anywhere, the drivers are interacting with the mobile IT device on driving situations. The distraction of the driver's attention causes the car accidents. It is necessary to develop the HVI(Human Vehicle Interface System) to integrate and manage the in-vehicle interactions with IT devices. Method: The HVI System is designed not as the interfacing subject but as the supervising system to monitor the driver's status and support the driver to concentrate on the primary tasks. The HVI system collects the status information of the car and driver and estimate the driving workload. Results: The HVI system controls how to provide the output information based on the driving workload. We implemented the HVI system prototype and applied in the real vehicle with the HVI cell phone and the HVI car navigation system. Conclusion: Depending on the driving situations, the HVI system prevented the information output in dangerous situation and diversified the modality and the intensity of the output information. Application: We will extend the HVI system to be connected the other various IT devices and verity the effectiveness of the system through various experiments.

A Study on an Evaluation Method for Human/System Interface of Advanced Supervisory Control Systems in Nuclear Power Plant (신형 원자력발전소 감시제어체계의 인간/체계 인터페이스 평가 방법에 관한 연구)

  • Lee, Dong-Ha;Im, Hyeon-Gyo;Jeong, Byeong-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.153-169
    • /
    • 1999
  • The design of nuclear control room is advancing toward totally computer based human system interfaces (HSI). Computer based interfaces offer the opportunity to provide improved support of operator performance, but if not properly deployed, can introduce new challenges. This paper reviews the Westinghouse AP-600 Human Factors Verification and Validation Plan selected for HSI evaluation model of Korea next generation nuclear control rooms. The AP-600 HSI evaluation model addressed 15 evaluation issues considering major activity class of operator and task complexity factors. This paper also describes the test procedures experimenters should follow to evaluate the addressed issues.

  • PDF

A Study on Development of an Integration Methodology for Design Guideline of Advanced Information Display (개량형 정보표시 화면설계 지침의 일원화 방법론 개발에 관한 연구)

  • Jeong, Seong-Hae;Cha, U-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.13-24
    • /
    • 2004
  • Human error has brought about accidents more than 50% in system of a large size and complicated expecially in nuclear power plants(NPPs). The technology of Man Machine Interface(MMI) has been changed to the digitalized controls employing computer-based technology. According to this trend. the human factors guidelines are becoming main issue for reliable supports to digitalized information displays. However. the existing human factors guidelines is not enough for advanced information display on NPPs. The purpose of this research is to develop the reliable design and evaluation guidelines for advanced information display in main control room (MCR) of NPPs. In this study. the various general human factors guidelines concerning information display on CRT are integrated on data base management system. unified based on the integration rules. and applied in computer based procedures. The use of the integrated guidelines are expected to evaluate the existing information display on MCR in NPPs from the human factors point of view.

Multimodal Interface Based on Novel HMI UI/UX for In-Vehicle Infotainment System

  • Kim, Jinwoo;Ryu, Jae Hong;Han, Tae Man
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.793-803
    • /
    • 2015
  • We propose a novel HMI UI/UX for an in-vehicle infotainment system. Our proposed HMI UI comprises multimodal interfaces that allow a driver to safely and intuitively manipulate an infotainment system while driving. Our analysis of a touchscreen interface-based HMI UI/UX reveals that a driver's use of such an interface while driving can cause the driver to be seriously distracted. Our proposed HMI UI/UX is a novel manipulation mechanism for a vehicle infotainment service. It consists of several interfaces that incorporate a variety of modalities, such as speech recognition, a manipulating device, and hand gesture recognition. In addition, we provide an HMI UI framework designed to be manipulated using a simple method based on four directions and one selection motion. Extensive quantitative and qualitative in-vehicle experiments demonstrate that the proposed HMI UI/UX is an efficient mechanism through which to manipulate an infotainment system while driving.

A Posture Based Control Interface for Quadrotor Aerial Video System Using Head-Mounted Display (HMD를 이용한 사용자 자세 기반 항공 촬영용 쿼드로터 시스템 제어 인터페이스 개발)

  • Kim, Jaeseung;Jeong, Jong Min;Kim, Han Sol;Hwang, Nam Eung;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1056-1063
    • /
    • 2015
  • In this paper, we develop an interface for aerial photograph platform which consists of a quadrotor and a gimbal using the human body and the head posture. As quadrotors have been widely adopted in many industries such as aerial photography, remote surveillance, and maintenance of infrastructures, the demand of aerial video and photograph has been increasing remarkably. Stick type remote controllers are widely used to control a quadrotor, but this method is not an intuitive way of controlling the aerial vehicle and the camera simultaneously. Therefore, a new interface which controls the serial photograph platform is presented. The presented interface uses the human head movement measured by head-mounted display as a reference for controlling the camera angle, and the human body posture measured from Kinect for controlling the attitude of the quadrotor. As the image captured by the camera is displayed on the head-mounted display simultaneously, the user can feel flying experience and intuitively control the quadrotor and the camera. Finally, the performance of the developed system shown to verify the effectiveness and superiority of the presented interface.

A Human-Environment Design for Main Control Rooms in SHIN-KORI 1.2 Nuclear Power Plants (신고리 1, 2호기 원자력발전소 주제어실 환경설계)

  • Byun, Seong-Nam;Kim, Sa-Kil;Ryu, Je-Hyeok
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.37-45
    • /
    • 2004
  • Human factors engineering design guidelines for main control rooms(MCR) in nuclear power plants(NPP) have been applied to optimize human-machine interface(HMI) between operators and their equipment on the basis of physical, physiological and cognitive aspects. However, the HMI design for MCR is not found to be sufficient to maximize operators' performance since the operators in the MCR experience excessive stress due to the environmental factors such as inappropriate interiors and illumination. Therefore, well-designed environment of the MCR may be equally important to improve human performance in the MCR. The objectives of the study are two-fold: (1) to propose an interior design of SHIN-KORI 1 2 for pleasant and comfortable working environments, and (2) to design indirect lighting system to enhance visibility and productivity. The human factors engineering checklists were developed to examine whether or not the proposed human-environment design for SHIN-KORI 1 2 satisfies the regulations and guidelines presented by NUREG-0700 Revision 1. The implications of the human-environment design are discussed in detail.

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

A Study on the Empirical Model for Predicting the Physical Suitability of Office Chairs (사무용 의자의 물리적 적합도 예측 모델링에 관한 연구)

  • 김진호;이현우;박수찬
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.151-165
    • /
    • 2001
  • The purpose of this study is to develop systematic methods for evaluating the suitability of a seat and build an empirical model for predicting the suitability of a seat. The following research schemes were pursued to achieve the objectives - Development of suitable chair dimensions - Analysis scheme for decomposing the human-product interface system - Development of model for evaluating suitability. As a result, we uncovered six dominant suitability dimensions for the design of a comfortable seat that is related to the physical dimension of a body, Here, six suitability dimensions were identified as the dimensions that represent the human sensitivity and psychological feeling on comfortable seats. Also, 43 human-interface elements (HIE's) such as seat height, seat width, seat depth, tilting angle, seat surface etc. were investigated. HIE was generally defined as the physical characteristic of manufacturing goods, and it had close related to the body dimension of a user and environment that it was used.

  • PDF

Control and acquisition system for USN sensors (USN 센서 제어 및 정보 취득 시스템)

  • Nam, Seung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.409-416
    • /
    • 2009
  • A lot of valuable-piece of information are acquisited through ubiquitous sensor network(USN) system composed of man-made sensors. The telemetry system used for communicating to access informations between nature and human-beings monitors and estimates the status of infrastructure, utilities and natural environments to prevent hidden disasters, improving quality of life and productivity in multi-directional views. That would be the reason of USN subsistence. This paper will be a review on how to build long-term USN system. Therefore, this paper focuses on reviewing the sensor interface and the sensor network interface and its significance as the foundation stone for varying USN service profiles and showing its development example, and finally proposing a few of things to set up future-oriented USN open system.

A Study on a Trend of Human Error Types Observed in a Simulated Computerized Nuclear Power Plant Control Room

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Objective: The aim of this study is to investigate a trend of human error types observed in a series of verification and validation experiments for an Advanced Control Room(ACR) equipped with Lager Display Panel(LDP), Work Station Flat Panel Display(WS FPD), list type Alarm System(AS), Soft Control(SC) and Computerized Procedure System(CPS). Background: Operator behaviors in a fully computerized control room are quite different from those in a traditional hard-wired control room. Operators in an ACR all together monitor plant status and variables through their own interface system such as LDP and WS FPD, are notified of abnormal plant status through their own list type AS, control the plant through their own SC, and follow the structured procedure through their own CPS whereas operators in a traditional control room only separately do their duty directed by their supervisor. Especially the secondary task such as manipulating the user interface of ACR can be an extra burden to all the operators including the supervisor. Method: The Reason's human error classification method was applied to operators' behavioral data collected from a series of verification and validation experiments where operators showed their plant operational behaviors under a couple of harsh scenarios using the ACR simulator. Results: As operators accustomed to the new ACR system, knowledge or rule based mistakes appearing frequently in the early series of experiments decreased drastically in the latest stage of the series. Slip and lapse types of errors were observed throughout the series of experiments. Conclusion: Education and training can be one of the most important factors for the operators accustomed to the traditional control room to be adapted to the new system and to run the ACR successfully. Application: The results of this study implied that knowledge or rule based mistakes can be reduced by training and education but that lapse type errors might be reduced only through innovative improvement in human-system interface design or teamwork culture design including a new leadership style suitable for ACR.