• 제목/요약/키워드: Human/System Interface

검색결과 783건 처리시간 0.011초

Development and Usability Evaluation of Fixed-base AHS Simulator

  • Cha, Doo-Won;Park, Peom
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 춘계학술대회 논문집
    • /
    • pp.57-62
    • /
    • 2002
  • This study described the specification and configuration of developed fixed-base AHS (Automated Highway System) simulator fur the human factors researches, and its usability evaluation results after riding 120, 140, and 160kph automated driving speed. As the results, this study suggested the subjects' preferences and opinions about simulator and AHS configurations that would help to establish the AHS R&D plan and driver-vehicle/road interface design guidelines as the basic researches of the AHS human factors.

  • PDF

운전자 정보제공 Human-Vehicle 인터페이스 시스템 (A Study on System for Human-Vehicle Interface System Development)

  • 최종우;김경호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.576-578
    • /
    • 2010
  • 운전자 정보제공 HVI(Human-Vehicle Interface) 시스템은 운전자에게 보다 향상된 인터페이스를 제공하기 위한 시스템이다. 요즘에는 다양한 정보기기가 등장하면서 운전 중에 다양한 정보를 습득할 수 있고 유용한 정보로 활용할 수 있다. 반면 이러한 기기들이 통합되지 않음으로 인해 조작에 불편을 주고 때로는 유용한 정보가 운전에 방해를 주는 요인이 된다. 따라서 본 연구에서는 운전자에게 정보제공을 위한 HVI 통합 시스템을 설계하여 다양한 정보기기를 통해 수집되는 정보를 운전자에게 효과적으로 제공하고 운전 중에 운전자의 동작을 최소화기 위한 시스템을 설계한다.

ADVANCED MMIS TOWARD SUBSTANTIAL REDUCTION IN HUMAN ERRORS IN NPPS

  • Seong, Poong Hyun;Kang, Hyun Gook;Na, Man Gyun;Kim, Jong Hyun;Heo, Gyunyoung;Jung, Yoensub
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.125-140
    • /
    • 2013
  • This paper aims to give an overview of the methods to inherently prevent human errors and to effectively mitigate the consequences of such errors by securing defense-in-depth during plant management through the advanced man-machine interface system (MMIS). It is needless to stress the significance of human error reduction during an accident in nuclear power plants (NPPs). Unexpected shutdowns caused by human errors not only threaten nuclear safety but also make public acceptance of nuclear power extremely lower. We have to recognize there must be the possibility of human errors occurring since humans are not essentially perfect particularly under stressful conditions. However, we have the opportunity to improve such a situation through advanced information and communication technologies on the basis of lessons learned from our experiences. As important lessons, authors explained key issues associated with automation, man-machine interface, operator support systems, and procedures. Upon this investigation, we outlined the concept and technical factors to develop advanced automation, operation and maintenance support systems, and computer-based procedures using wired/wireless technology. It should be noted that the ultimate responsibility of nuclear safety obviously belongs to humans not to machines. Therefore, safety culture including education and training, which is a kind of organizational factor, should be emphasized as well. In regard to safety culture for human error reduction, several issues that we are facing these days were described. We expect the ideas of the advanced MMIS proposed in this paper to lead in the future direction of related researches and finally supplement the safety of NPPs.

Conceptualizing Safety Systems Human Performance improvement using Augmented Reality

  • Murungi, Mwongeera;Jung, JaeCheon
    • 시스템엔지니어링학술지
    • /
    • 제12권2호
    • /
    • pp.81-90
    • /
    • 2016
  • The system performance of Engineered Safety Features is of utmost importance in a nuclear power plant. The human performance is identified as most critical to assurance of the optimal operability of safety systems during an emergency. The aim of this study is to determine how the performance of safety system could be evaluated using Augmented Reality technology. The paper presents a description of how a systems engineered approach could be used to develop the necessary operating conditions needed to conduct this measurement. Augmented Virtual Reality (AVR) interface technology is achieving ease of availability and widespread use in many applications today as illustrated by the launch of several AR and VR devices aimed at media consumption. As such, environments that incorporate such AVR hardware have become invaluable tools in designing human interface systems because of the high fidelity and intuitive response to natural human interaction that can be achieved [2]. The outcome of the measurement undertaken is to determine whether 1.) Operator(s) performance can be enhanced by introducing an improved cognitive method of monitoring plant information during an Emergency Operating Procedures (EOP) and 2.) In correlation, inform the performance of the diverse safety systems on the basis of human factors.

Developing Visual Complexity Metrics for Automotive Human-Machine Interfaces

  • Kim, Ji Man;Hwangbo, Hwan;Ji, Yong Gu
    • 대한인간공학회지
    • /
    • 제34권3호
    • /
    • pp.235-245
    • /
    • 2015
  • Objective: The purpose of this study is to develop visual complexity metrics based on theoretical bases. Background: With the development of IT technologies, drivers process a large amount of information caused by automotive human-machine interface (HMI), such as a cluster, a head-up display, and a center-fascia. In other words, these systems are becoming more complex and dynamic than traditional driving systems. Especially, these changes can lead to the increase of visual demands. Thus, a concept and tool is required to evaluate the complicated systems. Method: We reviewed prior studies in order to analyze the visual complexity. Based on complexity studies and human perceptual characteristics, the dimensions characterizing the visual complexity were determined and defined. Results: Based on a framework and complexity dimensions, a set of metrics for quantifying the visual complexity was developed. Conclusion: We suggest metrics in terms of perceived visual complexity that can evaluate the in-vehicle displays. Application: This study can provide the theoretical bases in order to evaluate complicated systems. In addition, it can quantitatively measure the visual complexity of In-vehicle information system and be helpful to design in terms of preventing risks, such as human error and distraction.

실감만남 공간에서의 비전 센서 기반의 사람-로봇간 운동 정보 전달에 관한 연구 (Vision-based Human-Robot Motion Transfer in Tangible Meeting Space)

  • 최유경;나성권;김수환;김창환;박성기
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.143-151
    • /
    • 2007
  • This paper deals with a tangible interface system that introduces robot as remote avatar. It is focused on a new method which makes a robot imitate human arm motions captured from a remote space. Our method is functionally divided into two parts: capturing human motion and adapting it to robot. In the capturing part, we especially propose a modified potential function of metaballs for the real-time performance and high accuracy. In the adapting part, we suggest a geometric scaling method for solving the structural difference between a human and a robot. With our method, we have implemented a tangible interface and showed its speed and accuracy test.

  • PDF

공간에서의 인터랙션 디자인 개념 적용에 대한 연구 (A Study on Applying the Concepts of Interaction Design to Space)

  • 강성중;권영걸
    • 한국실내디자인학회논문집
    • /
    • 제14권3호
    • /
    • pp.234-242
    • /
    • 2005
  • Interface is a medium or channel to communicate between human and things, while interaction is the manner of communication between them. Interaction design is designing experience of user through the interaction process for human, thing, system, and space. Richard Buchanan suggests four kinds of interaction: interface (person to thing interaction), transaction (person to person interaction), human interaction (human and environment interaction) and participation (human to cosmos interaction). With digital technology, architecture and space design have made various experiments at form, function, and content of space. Space evolves from a physical container to a stage to provide narrative and create new experience to users. Since understanding users, creating experience, efficient space design, content planning, and applicable technology are required for interaction design in space, multi-disciplinary research and cooperation is needed.

3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발 (Developing Interactive Game Contents using 3D Human Pose Recognition)

  • 최윤지;박재완;송대현;이칠우
    • 한국콘텐츠학회논문지
    • /
    • 제11권12호
    • /
    • pp.619-628
    • /
    • 2011
  • 일반적으로 비전기반 3차원 인체 포즈 인식 기술은 HCI(Human-Computer Interaction)에서 인간의 제스처를 전달하기 위한 방법으로 사용된다. 특수한 환경에서 단순한 2차원 움직임 포즈만 인식할 수 있는 2차원 포즈모델 기반 인식 방법에 비해 3차원 관절을 묘사한 포즈모델은 관절각에 대한 정보와 신체 부위의 모양정보를 선행지식으로 사용할 수 있어서 좀 더 일반적인 환경에서 복잡한 3차원 포즈도 인식할 수 있다는 장점이 있다. 이 논문은 인체의 3차원 관절 정보를 이용한 포즈 인식 기술을 인터페이스로 활용한 상호작용 게임 콘텐츠 개발에 관해 기술한다. 제안된 시스템에서 사용되는 포즈는 인체 관절 중 14개 관절의 3차원 위치정보를 이용해서 구성한 포즈 템플릿과 현재 사용자의 포즈를 비교해 인식된다. 이 방법을 이용하여 제작된 시스템은 사용자가 부가적인 장치의 사용 없이 사용자의 몸동작만으로 자연스럽게 게임 콘텐츠를 조작할 수 있도록 해준다. 제안된 3차원 인식 기술을 게임 콘텐츠에 적용하여 성능을 평가한다. 향후 다양한 환경에서 더욱 강건하게 포즈를 인식할 수 있는 연구를 수행할 계획이다.

Implementation of Human Motion Following Robot through Wireless Communication Interface

  • Choi, Hyoukryeol;Jung, Kwangmok;Ryew, SungMoo;Kim, Hunmo;Jeon, Jaewook;Nam, Jaedo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.36.3-36
    • /
    • 2002
  • $\textbullet$ Motion capture system $\textbullet$ Exoskeleton mechanism $\textbullet$ Kinematics analysis $\textbullet$ Man-machine Interface $\textbullet$ Wireless communication $\textbullet$ Control algorithm

  • PDF

Building Information-rich Maps for Intuitive Human Interface Using Networked Knowledge Base

  • Ryu, Jae-Kwan;Kanayama, Chie;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1887-1891
    • /
    • 2005
  • Despite significant advances in multimedia transferring technologies in various fields of robotics, it is sometimes quite difficult for the operator to fully understand the context of 3D remote environments from 2D image feedback. Particularly, in the remote control of mobile robots, the recognition of the object associated with the task is very important, because the operator has to control the robot safely in various situations not through trial and error. Therefore, it is necessary to provide the operator with 3D volumetric models of the object and object-related information as well such as locations, shape, size, material properties, and so on. Thus, in this paper, we propose a vision-based human interface system that provides an interactive, information-rich map through network-based information brokering. The system consists of an object recognition part, a 3D map building part, a networked knowledge base part, and a control part of the mobile robot.

  • PDF