• Title/Summary/Keyword: Hull-propeller interaction

Search Result 33, Processing Time 0.019 seconds

Numerical Study of the Flow Field Around an Axisymmetric Body with Integrated Propulsors (복합추진장치가 포함된 축대칭 물체 주위유동의 수치적 연구)

  • Jong-Woo Ahn;Il-Sung Moon;Sang-Woo Pyo;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Numerical study is carried out to investigate flow characteristics around an axisymmetric body with and without an integrated propulsor. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method and the standard $k-\varepsilon$ turbulence model for turbulence closure. In order to investigate the propulsor-hull interaction, the induced velocity calculated by surface panel methods is utilized for the boundary condition at the propeller plane. The calculated results are compared to the experimental results. It is considered that the present numerical code can be used for design of an integrated propulsor.

  • PDF

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method (격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.742-750
    • /
    • 2020
  • The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.

Study of the Open-Water Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 단독성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.149-156
    • /
    • 2022
  • In order to study the open-water test and analysis techniques for pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct resulting in the strong interaction between the components. A ring-shaped sensor was developed to measure the thrust and torque for duct and stator. The test equipment including the pumpjet is installed on an existing POW dynamometer in the reverse direction. The results from the reverse POW test setup were validated against those from the conventional POW test setup in the Towing Tank (TT) as well as in the LCT. The pumpjet open-water test was conducted at the Reynolds number of around 1.0×106, at which the obtained experimental data became stable in the Reynolds number effect test. The open-water test for the rotor (rotor-only) was conducted to study whether the duct and stator should be considered as a part of the hull or the propulsor. On the basis of the test results, it was shown that the duct and stator could be included in the propulsor. The total thrust, combined thrust of rotor, duct, and stator was used for the pumpjet open-water test analysis. As the whole pumpjet is defined as a propulsor, it is thought that the self-propulsion test and analysis could be conducted in the same way as that of the conventional propeller.