Journal of the Society of Naval Architects of Korea
/
v.37
no.4
/
pp.11-18
/
2000
This paper is concerned with the generation of an optimal forward hull form by a nonlinear programming method. A Rankine source panel method based on the inviscid and potential flow approximation is employed to calculate the wave-making resistance and SQP method is also used for the optimization. The hull form is represented by a spline function. The forward hull form of a minimum wave resistance with the given design constraints is generated. In addition, the forward hull form of a minimum total resistance by considering the frictional resistance together with an empirical form factor is produced and compared with the former result.
This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60( $C_B=0.6$) hull have been performed and the results obtained by the numerical calculations have been compared with the original hulls.
Journal of Advanced Marine Engineering and Technology
/
v.29
no.7
/
pp.785-794
/
2005
Modern ship hulls of large oil carriers and container carrers have become more flexible with scantling optimization and increase in ship length. On the other hand. as the demand for power has increased with the ship size. shaft diameters have become larger and stiffer. Consequently. the alignment of the propulsion system has become more sensitive to hull girder deflections. resulting in difficulties in analyzing the alignment and conducting the alignment procedure. Accordingly. the frequency of shaft alignment related bearing damages has increased significantly in recent years. The alignment related damages are mostly attributed to inadequate analyses. changes in the design of the vessel. shipyards' practices in conducting the alignment. and a lack of well defined analytical criteria. The hull deflections should be considered at the design stage to minimize the bearing damage caused by hull deflection. Hull deflections can be estimated by analytical approach and reverse calculation using the measured data. The hull girder deflection analysis using the reverse calculation will be introduced in this paper.
Journal of the Society of Naval Architects of Korea
/
v.44
no.6
/
pp.564-571
/
2007
In the present study, stern form optimization has been carried out using computational fluid dynamics (CFD) techniques. The viscous pressure drag has been minimized to optimize stern shape. Parametric modification function has been used to modify the shape of the hull. By the use of the parametric modification function and algebraic scheme to grid manipulation, the initial ship geometry was easily deformed according to change of design parameters. For purpose of illustration, KRISO 319K VLCC (KVLCC) is chosen for example ship to demonstrate stern form optimization. The numerical results indicate that the optimized hull yields a reduction in viscous resistance.
Bulletin of the Society of Naval Architects of Korea
/
v.26
no.2
/
pp.1-12
/
1989
This paper presents a method of minimizing the wave resistance components, due to the linear wave propagating to the far field and the breaking wave in the vicinity of the hull. This method consists of the linear optimization method for the linear wave resistance and the statistical optimization method for the breaking wave resistance through the analysis of the experimental data. For the purpose of the application, a wall-sided model with parabolic waterplane shape was selected as a basic hull form, and two modified hull forms with varied $C_p-curve$ of the fore-body were derived from the linear wave optimization method and the empirical method. The correlation between the linear wave resistance and the breaking wave resistance according to the $C_p-curve$ variation of the fore-body was investigated through the experimental and analytical results for the three hull forms. The fore-body shape optimized by the present method shows the reduction of the wave resistance by 47% comparing to the basic hull form at the design speed($F_n=0.26$).
Journal of the Society of Naval Architects of Korea
/
v.43
no.4
s.148
/
pp.512-520
/
2006
The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.
Bulletin of the Society of Naval Architects of Korea
/
v.19
no.4
/
pp.31-37
/
1982
Developing a minimum wave resistance hull form which is satisfying the given requirements such as displacement and speed is one of the important problems in ship hydrodynamics. The theoretical approach conducted by Pien was successful in developing an optimized hull form, however, which can not be applied directly to practical hull form without manual lines fairing process. To avoid this difficulty, source distribution which arrived after the optimization was put into a fictitious restricted channel and as a result practicably modified hull form was derived by stream line tracing. The wave resistance of the hull thus obtained was calculated by solving the simplified integral equation suggested by Kan. The resistance at design point is almost same with that of the original hull which was represented by source distribution on the vertical rectangular center plane. It is therefore recommended to use the derived hull form for the hull which obtained after manual lines fairing process at Pienoid method. Further researches both in theory and experiment are necessary before this concept is put into practical application.
Seo, Kwang-Cheol;Choi, Hee-Jong;Chun, Ho-Hwan;Kim, Moon-Chan
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2003.05a
/
pp.37-42
/
2003
Fundamental Study for optimizing ship hull form using SQP(sequential quadratic programming) method in a resistance point of view is presented. The Wigley hull is used as an initial hull and numerical calculations are carried out according to various froude numbers. To obtain the ship resistance the wave resistance is evaluated by a Rankine source panel method with nonlinear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of a hull surface is represented and modified by B-spline surface patch. The displacement and the waterplane transverse 2nd moment of inertia of the hull is fixed during the optimization process. And the shp design program called EzHULL is used to draw the lines of the optimized hull form to perform the model test.
Bulletin of the Society of Naval Architects of Korea
/
v.24
no.2
/
pp.20-28
/
1987
In general, preliminary hull form design is performed by changing a parent hull form using a computer to satisfy given requirements, e.g., principal dimensions, displacement, $L_{CB}$, and etc. Principal dimensions, $C_b,\;L_{CB}$ and midship sections are the only parameters to be modified in the traditional hull form variation methods available for preliminary design. In this paper, a method is presented in which local cross sections as well as principal dimensions and midship sections are modified according to design requirements. The method gives hydrostatic curves of modified hull form simultaneously. An optimization technique to satisfy the constraints of hydrostatic characteristics such as maximizing KM as a design requirement is also considered.
Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.