• 제목/요약/키워드: Hull optimization

Search Result 159, Processing Time 0.016 seconds

A Study on the Optimal Forebody Forms for Minimum Wave Resistance (최소조파 저항성능을 갖는 최적 선수형상에 관한 연구)

  • Sung-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.28-39
    • /
    • 1991
  • A study on the optimization problems to find forebode shapes with minimum wavemaking and frictional resistance was performed. The afterbody was fixed as a given hull and only forebode offsets were treated as design variables. Design variables were divided into the offsets of given hull and small variation from them. For the wavemaking resistance calculation, Neumann-Kelvin theory was applied to the given hull and thin ship theory was applied to the small variation. ITTC 1957 model-ship correlation line was used for the calculation of frictional resistance. Hull surface was represented mathmatically using shape function. As object function, such as wavemaking and frictional rersistance, was quadratic form of offsets and constraints linear, quadratic programing problem could be constructed. The complementary pivot method was used to find the soulution of the quadratic programing problem. Calculations were perfomed for the Series 60 $C_{B}$=0.6. at Fn=0.289. A realistic hull form could be obtained by using proper constraints. From the results of calculation for the Series 60 $C_{B}$=0.6, it was concluded that present method gave optimal shape of bulbous bow showing a slight improvement in the wave resistance performance at design speed Fn=0.289 compared with the results from the ship theory only.

  • PDF

Minimization of Wave-making Resistance for "Inclined Keel" Containership ("Inclined Keel" 컨테이너선의 조파저항 최소화를 위한 선형최적화)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Kim, Hee-Jung;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • Ever increasing fuel prices, almost doubled in the last three years, and global pressure to reduce their environmental impact have been enforcing commercial vessel operators and designers to re-assess current vessel designs with emphasis on their propulsion systems and operational practices. In this paper the "Inclined Keel Hull (IKH)" concept, which facilitates to use larger propeller diameter in combination with lower shaft speed rates and hence better transport efficiency, is explored for a modern 3600 TEU container vessel with the aim of fitting an 13 % larger diameter propeller (and hence resulting 20% lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration. It appears that successful application of the "inclined keel Hull" concept is a fine balance amongst the maximum gain in propulsive efficiency, minimum increase in hull resistance and satisfaction of other naval architectural and operational requirements. In order to make the concept economically more viable, this paper concentrates on the fore body design with the possible combination of increase of volume in its fore body to recover the expected volume loss in the aft body due to the space for larger propeller and its low wave-making resistance to minimize the efficiency loss using a well-established optimization software.

Conceptual Design of Small WIG Craft (소형 위그선 개념 설계)

  • Shin, Myung-Soo;Kim, Yoon-Sik;Lee, Gyeong-Joong;Kang, Kuk-Jin;Park, Young-Ha;Lee, Young-yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.134-146
    • /
    • 2006
  • This paper presents the primary conceptual design results of twenty-passenger class Wing-In-Ground(WIG) effect craft. As a first step, top level requirements were proposed and principal dimensions were determined. Maximum speed in ground effect condition is 150 km/h with two tons payload including passengers. Total weight is estimated as 8.5 tons with 2 tons of thrust. Hull and airfoil sections were designed and self propulsion tests were performed by radio controlled model. Two planing hull forms with the transom stern were proposed and towing tests were performed. The resistance and running attitude were measured and the feasibility is checked for the prototype hull form of the twenty-passenger class WIG craft. The free running tests show the stable smooth running attitude at designed speed. Also this radio controlled model can take off around 0.15 meter wave height. It can be said that the top level requirement for the twenty passenger class WIG ship is satisfied successfully. The design optimization to increase the transport efficiency and safety will be performed in the near future.

Analysis of Resistance Performance for Various Trim Conditions on Container ship Using CFD (CFD를 이용한 컨테이너 선형의 트림별 저항성능 해석)

  • Seo, Dae-Won;Park, Hyun-Suk;Han, Ki-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • Vessels are traditionally optimized for a single condition, normally the contract speed at the design draft. The actual operating conditions quite often differ significantly. At other speed and draft combinations, adjusting the trim can often be used to reduce the hull resistance. Changing the trim is easily done by shifting ballast water. There are several ways to assess the effect of the trim on the hull resistance and fuel consumption, including in-service measurements, model tests, and CFD. In this paper, CFD is employed for the assessment of the resistance performance according to the trim conditions. The commercial CFD code of the STAR-CCM+ is utilized to evaluate the ship’s resistance performance on a 6,800 TEU container ship. To validate of the effectiveness of STAR-CCM+, the experimental result of the KCS hull form is compared with the result from STAR-CCM+. It is found that the total resistance of the 6,8000 TEU container ship was reduced by 2.6% in the case of a 1-m trim by head at 18knots.

Fully coupled multi-hull/mooring/riser/hawser time domain simulation of TLP-TAD system with MR damper

  • Muhammad Zaid Zainuddin;Moo-Hyun Kim;Chungkuk Jin;Shankar Bhat
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.401-421
    • /
    • 2023
  • Reducing hawser line tensions and dynamic responses to a certain level is of paramount importance as the hawser lines provide important structural linkage between 2 body TLP-TAD system. The objective of this paper is to demonstrate how MR Damper can be utilized to achieve this. Hydrodynamic coefficients and wave forces for two bodies including second-order effects are obtained by 3D diffraction/radiation panel program by potential theory. Then, multi-hull-riser-mooring-hawser fully-coupled time-domain dynamic simulation program is applied to solve the complex two-body system's dynamics with the Magneto-Rheological (MR) Damper modeled on one end of hawser. Since the damping level of MR Damper can be changed by inputting different electric currents, various simulations are conducted for various electric currents. The results show the reductions in maximum hawser tensions with MR Damper even for passive control cases. The results also show that the hawser tensions and MR Damper strokes are affected not only by input electric currents but also by initial mooring design. Further optimization of hawser design with MR Damper can be done by active MR-Damper control with changing electric currents, which is the subject of the next study.

Design Optimization of Wake Equalizing Duct Using CFD (CFD를 이용한 Wake Equalizing Duct의 최적설계)

  • Lee, Ho-Sung;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, wake equalizing duct (WED) form optimization was carried out using computational fluid dynamics (CFD) techniques. A WED is a ring-shaped flow vane with a foil-type cross-section fitted to a hull in front of the upper propeller area. The main advantage of a WED is the power savings resulting from the uniformity of the velocity distribution on the propeller plane, a reduction in the flow separation at the aft-body, and lift generation with a forward force component on the foil section. This paper intends to evaluate these functions and find an optimized WED form for minimizing the viscous resistance and equalizing the wake distribution. In the optimization process, the study uses four WED parameters: the angle of the section, longitudinal location, and angles of the axes for the half rings against the longitudinal and transverse planes of the ship. KRISO 300K VLCC2 (KVLCC2) is chosen as an example ship to demonstrate the WED optimization. The optimization procedure uses genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results show that the optimized WED can reduce the viscous resistance at the expense of the uniformity of the wake distribution.

Synthesis of Automatically Path-Generating Four-Bar Linkage Using NURBS (NURBS를 이용한 4절 링크의 자동 경로 생성)

  • Hwang, Deuk-Hyun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.576-584
    • /
    • 2009
  • Up to now, it has been said that no satisfactory computer solution has been found for synthesizing four-bar linkage based on the prescribed coupler link curve. In our study, an algorithm has been developed to improve the design synthesis of four bar linkage based on the 5 precision points method. The suggested algorithm generates the desired coupler curve by using NURBS, and then the generated curve approximates as closely as possible to the desired curve representing coupler link trajectory. Also, when comparing each generated curve by constructing the control polygon, rapid comparison is easily achieved by applying convex hull of the control polygon. Finally, an optimization process using ADS is incorporated into the algorithm based on the 5 precision point method to reduce the total optimization process time. As for examples, two four bar linkages were tested and the result well demonstrated the effectiveness of the algorithm.

  • PDF

A Study on Form Parameter Method by Optimum Vertex Point Search (조정점 최적탐색에 의한 Form Parameter 방법에 관한 연구)

  • 김수영;신성철;김덕은
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.60-65
    • /
    • 2002
  • In order to generate hull form, we introduced optimization process. Fairness criteria is applied to object function, B-Spline control vertices are considered as design variables, optimization is proceeded with satisfying geometric constraint conditions. GA(Genetic Algorithm) and optimality criteria are applied to optimization process in this study.

FEA of the blast loading effect on ships hull

  • Hamdoon, Muhsin;Zamani, Nader;Das, Sreekanta
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.223-239
    • /
    • 2011
  • In combat operations, naval ships may be subjected to considerable air blast and underwater shock loads capable of causing severe structural damage. As the experimental study imposes great monetary and time cost, the numerical solution may provide a valuable alternative. This study emphasises on numerical analysis for optimization of stiffened and unstiffened plate's structural response subjected to air blast load. Linear and non linear finite element (FE) modeling and analysis was carried out and compared with existing experimental results. The obtained results reveal a good agreement between numerical and experimental observations. The presented FE models can eliminate confusion regarding parameters selection and FE operations processing, using commercial software available currently.

Optimization of Ship Propulsion System by Hull-Propeller-Engine Interaction (선체-프로펠러-주기관 사이의 맞춤에 의한 선박 추진 계통의 최적화)

  • Sung-Soo Ahn;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.20-29
    • /
    • 1993
  • In this paper, a procedure is presented to optimize ship propulsion systems considering the hull- propeller-engine interactions. The propeller diameter and expanded blade ratio are systematically varied to find out the optimum combinations of RPM and BHP at a given design speed by considering cavitation criteria, and then by comparing the fuel oil consumptions of each main engine candidates which can produce each combination of RPM and BHP, appropriate main engine with the lowest fuel oil consumption together with principal characteristics of the optimum propeller are selected.

  • PDF