• Title/Summary/Keyword: Hull from design

Search Result 345, Processing Time 0.025 seconds

Hydrodynamic Forces and Flow Characteristics for Three-Different Types of Yacht Keel (요트 킬의 형상에 따른 유체력 및 유동특성 연구)

  • Choi, Ki-Chul;Hyun, Beom-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.414-421
    • /
    • 2006
  • Yacht is operated by wind-driven thrust on the saii, but also experiencing the side force. Thus the keel attached on the bottom of main hull prevents it from flowing sideway. Since the keel affects the stability and thrust of yacht, its selection is one of the most important factor in design. In the present paper the correlation between yacht hull and keel was investigated. through comparison of forces measured at various combinations of heeling and leeway angles with and without keel. Keel-only test was also performed to find out the drag and lift characteristics of keel itself. finally three different types of keel, i.e. fin keel, bulb keel and winglet keel were tested to compare their advantages and drawbacks.

Numerical Analysis on the Wave Resistance for Development of Ship`s From of Tuna Purse Seiner (참치 선망어선의 선형개발을 위한 조파저항의 수치해석)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.228-239
    • /
    • 1992
  • The purpose of the present research is to develop an efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. Some numerical results for series 60, C sub(b) =0.6, hull are presented in this paper. The wave pattern and wave resistance are computed at two Froude numbers, 0.267 and 0.304. These results are better than those of Michell's thin ship theory in comparison with measured results. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

A Study on the Possibility of Hull Form Design using Numerical Towing Tank (SHIPFLOW)

  • Lee, Kwi-Joo;Joa, Soon-Won;Sun, Jae-Ouk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.251-253
    • /
    • 2003
  • This paper discusses some practical problems of the determination of ship wave resistance from flow calculation and the model test. there are so many kind of CFD program as FLUENT, WAVIS, SHIPFLOW, COMET etc. for finding optimized hull. we should know how much percent we trust the program. so if we gather computed values of the wave resistance we'll able to get more accurated values of presumptive.

  • PDF

A Study on the Estimation of Light Weight Distribution on Ship by Statistical Data (통계적 자료에 의한 선박의 경하분포추정법에 관한 연구)

  • 박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.51-79
    • /
    • 1986
  • From time to time the light weight distribution has been discussed, It play an important part in the preliminary design state because of its influence on the available deadweight. Up to the past, the Light weight distribution acting on the ship has been estimated graphically by means of integraph or approximately by the simplified calculations. Recent development has made it possible to use Lloyd's coffin method or Robb's coffin method for Bulk Carrier, Tanker, Cargo ship where the hull weight is distributed based upon the $C_B$ The hull weight distribution is then super-composed by number of fixed weights(i.e. machinery , equipment, etc.) The authors built up the method by which the Light weight distribution is calculated using a computer. In the usual calculations, the higher accuracy is aimed at, the longer time would be taken, therefore the accuracy would not be so good as to be expected if the time is restricted. The method using a computer can dissolve these and calculated accurately in shorter time the Light weight distribution with less data.

  • PDF

A Study on the Flow Characteristics around a Hull Form of Coast-Canal Going Pusher-Barge (연안-운하 연계수송용 푸셔-바지 선형주위의 유동특성에 관한 연구)

  • Kim, Sung-Yong;Lee, Young-Gill;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-26
    • /
    • 2001
  • In this paper. the development of a pusher-barge hull form which enables the continuous transportation along the coast and canal is performed. For the design stage of the hull forms. these are developed for Kyungin canal which is will be drawn up as the next contribution project of the Korean government are adopted. The model tests for the designed ship are carried out in the Inha University Towing Tank and the numerical simulations are done with a finite difference method based on MAC scheme. At first, the experiments are performed with designed model ships from low speed to high speed including service speed(6knots) among the corresponding designed speed. Resistance characteristics of designed ships are compared with experimental results of other several pusher-barge hull shapes. Next, the numerical simulations are performed for three cases, that is pusher only, barge only and pusher-barge condition in the designed speed. Each calculations are carried out in deep and restricted water condition. The flow characteristics around hulls in the latter condition are compared with those in the former condition.

  • PDF

Influences of the Surface Pollution Cause by the Marine Growth on Ship Hulls on Engine Performance and Output (선체 해양생물의 선저오염이 엔진성능과 출력에 미치는 영향)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.399-404
    • /
    • 2015
  • The cost of fuel in ships has recently increased due to a rapid increase in international oil prices and international restrictions regarding the greenhouse effect generated from the burning of fuel. Therefore, different methods for changing the hull designs for improving energy efficiency, developing coating for reducing friction resistances, developing additives for improving engine thermal efficiency, and low-speed operation for reducing fuel consumption have been considered. The developments of high-speed, large-scale, and energy-saving vessels are deemed essential to adapt to the recent high oil price era. Therefore, it is important to analyze Precisely the qualitative and quantitative changes in the resistance value of the local areas of the hull surface. In this study, the engine performance before and after docking was analyzed to examine friction resistance caused by marine growth on the hull as a basic study for improving the energy efficiency. The result was then presented by comparing it with the previous data for 2.5 years between docks to investigate the performance of the main engine, the change in friction resistances and loads, the fuel consumption and ship speed.

Prototype of the Automated Curved Hull Forming System based on Systems Engineering Process (시스템엔지니어링 기반 선체 곡가공 자동화 시스템 프로토타입 개발)

  • Noh, Jac-Kyou;Oh, Dae-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.275-281
    • /
    • 2011
  • One of the major technology issues in the ship production processes is the curved hull forming process that is a bottle neck and performed by experienced workers. In order to automate the curved hull forming process, there are a lot of attempts to develop the automation system by many shipbuilding companies and academic labs. However they have some problems which put the developed system in the difficulties to be used and maintained in the yard. In this paper, the problems are formed and solved by using tailored Systems Engineering Process which consists of four steps, those are requirement definition, system design, implementation of subsystem and components, and system integration and verification. A prototype for the proposed system development methodology is implemented. From the consideration of the prototype implemented, it is verified that this methodology can be an alternative to solve the problems.

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

Effects of Rice Hull Addition and Bin Wall Characteristics on Pig Slurry Composting Properties (왕겨 이용 방법과 옹벽이 돈분 퇴비화에 미치는 효과)

  • ;Craig, Ian P
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • This work was carried out to investigate the effects of rice hull continuously utilized and/or replenished on the composting properties and to obtain the fundamental data between an unsupported wall and a soil supported wall during the period of composting with pig slurry in winter season. There were no the temperature holding effects in soil supported wall. New compost facility design for the temperature holding effects from a soil supported wall was required. The results were as follows; 1. Composting 1㎥ of pig slurry caused to save on 0.31㎥ of bulking agent in the unsupported wall in comparison with a soil supported wall in the rice hull single addition, and 0.45㎥ in the rice hull gradual addition. 2. The pile in the rice hull single addition had a high temperature in 4 days of composting indicating $71^{\circ}C$ and had a tendency in repeating periodically between $40^{\circ}C$ and $65^{\circ}C$ till 43 days of composting. And also the temperature of the pile was maintained between $48^{\circ}C$ and $28^{\circ}C$ after 50 days of composting. The pile of a rice hull gradual addition had the lower point of the temperature high increasingly according to adding up rice hull during the 35 days of composting. 3. The pH recorded in the rice hull single addition was higher(8.35∼10.02) compared to the rice hull gradual addition(8.6∼9.8). The pile of a rice hull single addition had a tendency in abruptly decreasing pH of the unsupported wall during the period of between 0.363$\textrm m^3$ and 0.537$\textrm m^3$ as a unit of pig slurry per rice hull. EC depending upon the way in adding rice hull was changed between 1.10 mS/$\textrm {cm}^3$ and 1.87 mS/$\textrm {cm}^3$. 4. The organic matter in an unsupported wall of the hull single addition was maintained the level of 55% during the period between 0.119㎥ and 0.363㎥ as a unit of pig slurry per rice hull while in the soil supported wall between 48 and 70. Water soluble C:N ratio was maintained between 1 and 2 in the rice hull single addition, while between 1 and 3 in the rice hull gradual addition. 5. Fertilizer constituents were detected higher level in the unsupported wall than in the soil supported wall in all treatments. This was dependant upon the input of pig slurry.

  • PDF

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF