• Title/Summary/Keyword: Hull deflection

Search Result 65, Processing Time 0.02 seconds

A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • HAM JUH-HYEOK
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

A Study on the Geometric Nonlinear Behaviour of Ship Plate by Energy Method (에너지법에 의한 선체판의 기하학적 비선형거동에 관한 연구)

  • Jae-Yong Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.94-104
    • /
    • 1999
  • Plate buckling is very important design criteria when the ship is composed of high tensile steel plates. In general, the plate element contributes to inplane stiffness against the action of inplane load. If the inplane stiffness of the plating decreases due to buckling including the secondary buckling, the flexural rigidity of the cross section of a ship's hull also decreases. In these cases, the precise estimation of plate's behaviour after buckling is necessary, and geometric nonlinear behaviour of isolated plates is required for structural system analysis. In this connection, the author investigated the geometric nonlinear behaviour of simply supported rectangular plates under uniaxial compression in the longitudinal direction in which the principle of minimum potential energy method is employed. Based on the energy method, elastic large deflection analysis of isolated palate is performed and simple expression are derived to discuss the bifurcation paint type buckling and limit point type buckling.

  • PDF

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

A Study on a New Concept for the Structural Strength Assessment to Development of Membrane LNG Cargo Container System under Static Load (멤브레인형 LNG 화물창 개발을 위한 정적 구조 안전성 평가 모델 연구)

  • Hwang, Se Yun;Kim, Yooil;Kang, Joong Kyoo;Lee, Jang Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.162-169
    • /
    • 2016
  • A new concept of membrane type LNG CCS was proposed. Also, its static behavior was numerically analyzed considering the interaction between primary and secondary barrier together with securing device. Hull deflection was taken into account as an external load, together with temperature distribution across the barriers. The suggested numerical model considers both sliding and contact between the two mating surfaces of both the primary and secondary barrier, and anisotropic material behavior of plywood, R-PUF was also taken into account. Furthermore, detailed local strength was evaluated for the securing device, which is arranged between two barriers to hold the primary barrier. It was confirmed through the numerical analysis that the new concept of membrane type CCS was structurally safe under static loading condition and securing concept was structurally reliable.

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

Characteristics of Pressure Distribution of Journal Bearing according to Lining Material (라이닝 재료에 따른 저널 베어링의 압력 분포 특성)

  • Shin, Sang-Hoon;Rim, Chae Whan;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.480-485
    • /
    • 2017
  • The main reason for the heat induced accidents occurring at the after stern tube journal bearing is the excessive local pressure caused by the deflection of the propulsion shaft due to the propeller loads. It is expected that the contact area could beenlarged and the local pressure reduced accordingly by using a lining material having alow Young's modulus instead of the existing white metal. The purpose of this work is to investigate the characteristics of the pressure distribution and determine the allowable pressure value in the case where bearing products made of materials having a low Young's modulus are used. In this study, the propeller loads, heat effect, and hull deflection are considered in the evaluation of the local pressure of the ship propulsion shaft. Also, the Hertzian contact condition was applied. From the analysis results in the case where a lining material with a low Young's modulus was used, it was found that a robust design could be achieved and the local pressure could be reduced effectively independent of the load conditions. It will be possible to producenew products made of materials having a low Young's modulus if the manufacturer confirms the performance specifications drawn by this study.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull ginder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are inverstigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

Ultimate Strength Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 최종강도거동 해석)

  • Park Jo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.147-154
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF