• 제목/요약/키워드: Hull Surface

검색결과 462건 처리시간 0.025초

형상 파라메터와 평활화 스키닝을 이용한 선수 선형 곡면 모델링 (Surface Modeling of Forebody's Hull Form Using Form Parameters and Fair-Skinning)

  • 김현철;황보승면
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.601-610
    • /
    • 2008
  • This paper deals with a new geometrical surface modeling method of forebody's hull form which is fully defined by form parameters. The complex hull form in the forebody can be modeled by the combination of three parts: bare hull, bulbous bow and blending part which connects a bare hull and a bulbous bow. All these subdomain parts are characterized by each own form parameters and constructed with simple surface model. For this, we need only 2-dimensional hull form data and then the form parameters are calculated automatically from these data. Finally, the smooth hull form surfaces are generated by parametric design and fair-skinning. In the practical point of view, we show that this new method can be useful and efficient modeling tool by applying to the hull form surface modeling of Panamax container's forebody.

왕겨를 이용한 활성탄 개발에 관한 연구 (I) (A Study on the Development of Activated Carbon from Rice-Hull)

  • 이희자;조양석;조광명
    • 한국환경과학회지
    • /
    • 제9권1호
    • /
    • pp.81-88
    • /
    • 2000
  • Every year, 1.1 million tons of rice-hull are produced in South Korea by the by-product in pounding rice. But they has mainly been utilized as a fuel, agricultural compost and moisture proofs. So, it's very valuable to use waste rice-hull for activated carbon manufacture. SiO2 content was the highest among inorganics in rice-hull. Therefore, the SiO2 extraction experiments were carried out under the various conditions of pH 9 to 14, reaction time from 2 to 24 hrs and various temperature of 20 to 100℃. The results showed that increase in pH and temperature enhanced SiO2 extraction from the carbonized rice-hull. The surface area of the carbonized rice-hull indicating activated carbon adsorption capacity was very small as 178∼191 m2/g at first. However, it was increased to 610∼675 m2/g when extracted in alkali solution at 100℃. When the mixing rate of carbonized rice-hull and NaOH was 1:1.5, iodine No. and surface area of activated rice-hull during 10 min at 700℃ were 1,650 mg/g and 1837 m2/g, respectively. Subsequently, an activated carbon with specific surface area of 1,300∼1,900m2/g was manufactured in a short contact time of 10∼30 min with a mixing rate of 1:1.5 in carbonized rice-hull and NaOH, and iodine No. and specific surface area increased as the amount of SiO2 removal increased.

  • PDF

선체조도에서의 저항증가의 평가에 관한 연구 (A study on the Valuation of Resistance increase due to any quality at hull roughness)

  • 박명규;김동진;이승호
    • 한국항해학회지
    • /
    • 제12권3호
    • /
    • pp.23-37
    • /
    • 1988
  • This paper deals with the method of determining the drag of hull surface which has any quality of roughness. The method consists mainly of the theoretical point of view, then the theory enables the drag coefficient to be calculated at full scale. The hydrodynamical roughness function of hull surface ${\triangle}U_+$, affected by the hull roughness are considered as to two cases, smooth surface and rough surface case separately. The inadequacy of a single parameter to define hull roughness is discussed and thus an as additional texture parameter is proposed.

  • PDF

왕겨의 화학적 조성 및 왕겨섬유의 형태적 특성 (Chemical Composition of Rice Hull and Morphological Properties of Rice Hull Fibers)

  • 성용주;신수정;오민택
    • 펄프종이기술
    • /
    • 제41권3호
    • /
    • pp.22-28
    • /
    • 2009
  • The rice hull could be the one of the most abundant agricultural waste in Korea. Since the efficient utilization of agricultural waste or byproducts of food industry would be critical for the sustainable growth, this study conducted the investigation of the chemical composition and the morphological properties of rice hull and rice hull fiber. It was found that there was big difference between the outer surface and the inner surface in the chemical composition and the morphological properties. Expecially, the outer surface showed the rugged patterns in which most of silica of rice hull existed. Little or no silica was found in the inner surface and rice hull fiber. The average fiber length of rice hull fiber was 0.45mm which was shorter than that of hardwood fiber. Rice hull fiber showed a round long shape which is typical shape of non-wood fibers

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

선형의 기하학적 모델링을 위한 직접순정법에 관한 연구 (Direct Fairing for Geometric Modeling of Hull Surface)

  • 김원돈;남종호;김광욱
    • 대한조선학회논문집
    • /
    • 제28권1호
    • /
    • pp.1-11
    • /
    • 1991
  • 선체 외판은 다양한 곡률을 가진 곡면으로 이루어져 있으므로 선박설계, 선각생산을 위한 선형의 기하하적 모델링에 있어서 순정작업은 시간이 많이 소요되는 일이나 피할 수 없는 작업이다. 본 논문에서는 교차순정법의 지루한 작업을 극복할 수 있는 수학적 순정법인 직접순정법을 제시하였다. 선체외판의 곡면표현을 위하여 3차의 B-spline 곡면식이 사용되었다. 순정작업은 외판의 변형에너지를 최소화하는 방법으로 수행되었다. 선체외판의 순정도 판정을 위하여 Gaussian 곡률과 판의 변형에너지의 값을 색상을 통하여 가시화 하였다. 순정작업에 의한 곡면모델로부터 산출된 선형의 기하학적 정보는 기본설계계산, 선각생산 등 선형과 관련된 전산시스템에 활용될 수 있도록 정보연계에 이용되었다.

  • PDF

Study on the Development of an Optimal Hull Form

  • Cho Hee-Jong;Lee Gyoung-Woo;Youn Soon-Dong;Chun Ho-Hwan
    • 한국항해항만학회지
    • /
    • 제29권7호
    • /
    • pp.603-609
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP( sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verify the validity of the developed program the numerical calculations for Wigley hull and Series 60 Cb=0.6 hull are performed and the results obtained after the numerical calculations are compared with the initial hulls.

최적선형개발에 대한 기초연구 (Fundamental Study for the Development of an Optimum Hull Form)

  • 서광철;최희종;전호환;김문찬
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.37-42
    • /
    • 2003
  • Fundamental Study for optimizing ship hull form using SQP(sequential quadratic programming) method in a resistance point of view is presented. The Wigley hull is used as an initial hull and numerical calculations are carried out according to various froude numbers. To obtain the ship resistance the wave resistance is evaluated by a Rankine source panel method with nonlinear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of a hull surface is represented and modified by B-spline surface patch. The displacement and the waterplane transverse 2nd moment of inertia of the hull is fixed during the optimization process. And the shp design program called EzHULL is used to draw the lines of the optimized hull form to perform the model test.

  • PDF

전 선체 진동에 영향을 미치는 프로펠러 변동압력의 평가 (The Assessment of Propeller Induced Fluctuating Pressure Influencing Hull Girder Vibration Analysis)

  • 이기문;양성붕;김문수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.59-64
    • /
    • 2009
  • The propeller induced forces acting on a hull are surface forces and bearing forces. The bearing forces are the forces acting directly on the propeller which are transferred to the hull through the propeller bearings. The surface forces are those which act by fluid pressure directly on the various hull surfaces. Because the surface force is main source to oscillate stern constructions and deckhouse, the estimation of surface force is very important to predict response of forced vibration of that. The estimation methods were statistical analysis method, theoretical analysis method and method through model test.

  • PDF

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.