• Title/Summary/Keyword: Hull Plate

Search Result 212, Processing Time 0.023 seconds

Development of Buckling and Compressive Ultimate Strength Formulations for Rectangular Plate with Cutout (압축하중을 받는 유공판의 좌굴 및 최종강도 설계식 개발)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.237-244
    • /
    • 2004
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method.

  • PDF

Design of Forming Path for Concave Steel Plate Using the Line Array Roll Set (선형 배열 롤 셋을 이용한 오목형상 강판 성형경로 설계)

  • Roh, H.J.;Kim, K.H.;Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.361-364
    • /
    • 2008
  • Incremental forming path to manufacture a thick concave steel plate using the line array roll set is designed. To find the optimum forming path, the forming processes are simulated by the finite element method. A general-purpose commercial software, MSC.MARC is used. The rolls are modeled as rigid surfaces and the thick plate is modeled as 8-node hexahedral elastic-plastic solid elements to predict accurate springback. It is found that the process can be successfully applied to the fabrication of the dual curvature ship hull plate

  • PDF

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.

A Study on the Protection of the Bare and Painted Steel Plates (아연 양극에 의한 도장강판과 나강판의 방식 연구)

  • 문경만;김종신;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Galvanic protection method is one the cathodic protection methods and is mostly used for corrosion prevention of heat exchangers and ship's hull. In this paper, it was investigated that how cathodic potential distribution was varied with according to the bare and painted steel plates in case of galvanic anode protection. The results obtained above were as follows. 1. Cathodic potential distribution of a painted steel plate was smoothed than that of the bare steel plate all over the cathodic surface area. 2. It was shown that polarization potential of the bare steel plate was somewhat shifted to negative potential, on the contrary that of the painted steel plate was somewhat shifted from negative potential to positive potential as time gone by beginning of galvanic anode method. 3. The applied current density in order to maintain constant protection potential(-770mv SCE) in the painted steel plate was less than that of the bare steel plate because of the high resistance polarization of the painted steel plate. 4. It was suggested that required number and life-time of anode for galvanic anode protection could be decided easily with corrosion prevention coefficient obtained by experimental data.

  • PDF

Realtime Simulation of Deformation due to Line Heating for Automatic Hull Forming System (곡가공 자동화 시스템을 위한 선상가열에 의한 변형의 실시간 시뮬레이션)

  • Dae-Eun Ko;Chang-Doo Jang;Seung-Il Seo;Hae-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.116-127
    • /
    • 1999
  • Line heating is a method widely used in forming ship hull surface. From the viewpoint of mechanics it is large deformation thermal elasto-plastic problem of arbitrary shaped plate. Many researches have been carried out to resolve this problem. Especially, Jang et al.[1] proposed a simplified thermal elasto-plastic analysis method to predict effectively the deformation of plate due to line heating. In this paper, we improved the method of Jang et al.[1] by considering tension yielding in temperature decreasing stage and verified with experimental results. FEA program using MITC4 degenerated shell element was made to deal with elastic large deformation problem. The newly proposed method can be used in the simulation and control of forming hull surface for higher productivity with simplicity and efficiency.

  • PDF

A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry (60M급 쌍동형 카페리 구조의 유공판 좌굴강도 연구)

  • Seo, Kwang-Cheol;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.126-132
    • /
    • 2018
  • This paper discusses about results of advanced buckling strength design for several kinds of perforated plated in the twin-hull car-ferry. For medium / small sized high speed vessels with a length of more than 50 meters and a length / width ratio of more than 12, such as car-ferries, it is highly possible that the buckling strength becomes weak due to the relatively thin thickness and the use of low strength capacity such as mild steel. Especially, it becomes big problem about weak buckling rigidity around the opening to access purpose in the perforated. As regarding safety design point of view for perforated plate, it is necessary to clarify buckling strength and ultimate strength by the distribution of in-plane load distribution around the opening. In this study, nonlinear series analysis using ANSYS was performed to clarify the influence of parameters such as aspect ratio, opening ratio and opening shape affecting the buckling and ultimate strength characteristics of the perforated plate under axial compression and we are derived the optimum design as buckling strength point of view. Based on these results, the governing factor determining the buckling strength of the perforated plate was the opening ratio, and the aspect ratio and the shape of the hole were not influenced.

On the Suitable Shape of Bottom for the Application of Air Cavity on Hull Bottom to the Practical Hull Form (선저부 공기공동을 이용한 실선선형의 저항성능 개선을 위한 선저형상 개량연구)

  • Seok-Cheon Go;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • This paper describes the modification of hull bottom for the air lubrication technique to the passenger boat in service at the Chung-Ju lake, which has a large beam-draft ratio. From numerical analysis of 2-D cavity problem by potential theory, the cavity shape, length and the pressure in cavity are estimated for the simplified geometry of hull bottom, and the non-dimensional parameters affecting air cavity phenomena are investigated. Extensive resistance tests for the model ship which has variation of step height and side strip have been performed to investigate the formation of air cavity and the drag reduction effectiveness. And also, the development of attached cavity to the bottom were observed from the flat bottom made by transparent acrylic plate. From this survey on the modification of bottom shape and the air lubrication technique, the total resistance of model ship could be reduced by about 25% at the design speed compared to the proto type hull form.

  • PDF

Study on Application of Flexible Forming Technology for Curved Plate Forming using Thick Plate (후판의 곡면 가공을 위한 가변성형기술 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Lee, H.M.;Ku, T.W.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.122-125
    • /
    • 2008
  • Generally, in shipbuilding, large curved block components which have large curvature radius along various directions are used for huge ships such as LPG-vessel and oil tanker ships. Lots of the blocks are manufactured by line heating method which uses a heat source to bend the thick plate materials. The conventional forming process is entirely dependent on the experience of experts because it is done by manual method thus the curvatures and qualities are not uniform even for same part. However, it is hard to adopt the press forming process using die tool sets fur the manufacturing because of the characteristics of the industry that based on the small quantity and variety in the products. In this study, flexible forming technology using numbers of punches is investigated based on the simulation to substitute for the conventional forming method. Thick plate material model was applied to the proposed process to verify the feasibility for hull structure block forming process. The press forming processes were simulated by adopting the explicit-to-implicit sequential solution. Moreover, experiment of the flexible forming process was also conducted and its results were compared with that of simulation.

  • PDF

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

A Study on the In-line Assessment of Completion for Fabrication of Curved Plates(I) (곡판 가공의 인라인 완성도 평가에 관한 연구(I))

  • Jung, Jae-Min;Park, Chi-Mo;Yang, Park-Dal-Chi
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.135-139
    • /
    • 2009
  • In the line heating for the plate forming of a ship's hull, an in line assessment of completion is necessary for an automated production system. In the current curved plate forming process, a fabricated plate is compared to a template that is made in the mold loft and is used for the determination of the heating line for the next step. In this paper, a new method is presented for the in line assessment of completion for curved plate forming. This method uses a 3-D scanner. For the registration of the scanned data for a surface and the target surface, the ICP (Iterative Closest Points) method was adopted. A computer program was developed to carry out the registration, check for similarities, visualize the surface, and control the results. This program was applied to a sample curved plate forming process.