• Title/Summary/Keyword: Huber value

Search Result 7, Processing Time 0.021 seconds

A Method of Choosing a Value of the Bending Constant in Huber's M-Estimation Function

  • Park, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2000
  • The shape of an M-estimation function is generally determined in the sense of either/both maximizing efficiency of an M-estimator at the model or/and bounding the influence function of an M-estimator. We propose an empirical method of choosing a value of the bending constant in Huber's ${\psi}-function$, which is the most widely used M-estimation function when estimating the location parameter.

  • PDF

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VIII) - The Hydraulic Architecture of Quercus mongolica (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VIII) - 신갈나무의 수분통도성(水分通導性) 구조(構造) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.120-129
    • /
    • 1996
  • This study was carried out to investigate the hydraulic architecture such as relative hydraulic conductivity, Leaf specific conductivity(LSC), Huber value, Specific conductivity of the stem, branch and Junctions of stem-to-branch in Quercus mongolica trees. The hydraulic architecture of various hydraulic conductivities of stem and branch was described. The results obtained were summarized as follows : 1. The range of relative hydraulic conductivity was $2.5526{\times}10^{-12}$ to $1.2260{\times}10^{-10}m^2$ in stems, $1.6279{\times}10^{-11}$ to $6.8378{\times}10^{-11}m^2$ in branches. The relative hydraulic conductivities increased with decreasing diameter of stem and branch. The relative hydraulic conductivity of one-year-old terminal shoots were two times greater than that of the lateral shoots. 2. LSC value was larger at the top than at the base in stem. LSC is much smaller in branches than in stem ; especially smallest at branching part. 3. Hydraulic conductivities of the branching part appeared the different values with the 4 type and 4 type. Relative hydraulic conductivity, LSC, Specific conductivity and mean vessel diameter in type branching part were larger in stem than in branch part, but not found in the branching part of Y type. 4. LSC and Specific conductivity of stem increased with decreasing diameter, but Huber value slowly increased with decreasing diameter ; especially highest at less than 1cm diameter. 5. LSC, Huber value, and mean diameter of vessels were larger at 1-year-old leader shoots than at lateral shoots. 6. The mean vessel diameter in various parts of a tree decreased with decreasing diameter of stem, but the number of vessels per unit area($mm^{-2}$) increased reversely. Mean vessel diameter in stem decreased sharply at earlywood and slowly at latewood with decreasing diameter of stem.

  • PDF

Studies on the Shade Tolerance, Light Requirement, and Water Relations of Economic Tree Species(I) - Changes of Hydraulic Conductance of Six Deciduous Hardwood Species Subjected to Artificial Shade Treatments - (주요경제수종(主要經濟樹種)의 내음성(耐陰性) 및 광선요구도(光線要求度)와 수분특성(水分特性)에 관한 연구(硏究)(I) - 인공피음처리(人工被陰處理)를 실시(實施)한 낙엽활엽수(落葉闊葉樹) 6종(種)의 수분통도성(水分通道性) 변화(變化) -)

  • Kwon, Ki Won;Choi, Jeong Ho;Chung, Jin Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.292-298
    • /
    • 1999
  • Huber value and leaf specific conductivity were investigated for determining the hydraulic conductance of six deciduous hardwood species subjected to five levels of artificial shade treatments. Huber values measured in full sun were in the ranges of $1.5{\sim}9.1mm^2/dm^2$, $1.3{\sim}2.6mm^2/dm^2$, $1.5{\sim}5.3mm^2/dm^2$ in June, July, and September, respectively in the first year. The values generally decreased with increasing the shading in most of the species studied. Because of early defoliation in September, most of the values measured were also higher in September than in July. Huber values were quite different between those of the first year and those of the second year in most of the species studied, but the seasonal variation of Huber values and shading effects to the values seemed to be similar between the first and the second years. The values of leaf specific conductivity(LSC) measured in Betula platyphylla var. japonica. B. schmidtii, Zelkova serrata, Acer mono for 2 years were in the range of $4.0{\sim}80.0{\mu}{\ell}/dm^2$ by season and by shading treatment. But in Ligustrum obtusifolium and Prunus sargentii, the values were in the ranges of $4.0{\sim}280.0{\mu}{\ell}/dm^2$ and $8.0{\sim}120{\mu}{\ell}/dm^2$, respectively with having quite different values compared with those of the above species. Seasonal variation of LSC values was more or less irregular by species and by treatment year, but the LSC values of B. platyphylla vac. japonica, B. schmidtii, and P. sargentii in the first year and also those of Z. serrata and P. sargentii in the second year were mostly higher in September than in July. The LSC values seemed to be generally decreased with increasing the artificial shading in all of the species studied.

  • PDF

Ecophysiological Interpretations on the Water Relations Parameters of Trees (XI) -The Comparison of Hydraulic Conductivity of Branch Junctions in Twenty-one Deciduous Broad-Leaved Species (수목(壽木)의 수분특성(水分特性)에 관한 생리(生理)·생태학적(生態學的) 해석(解析)(XI) - 낙엽(落葉) 활엽수(闊葉樹) 21종(種)의 분지부(分枝部)의 수분통도성(水分通道性) 비교(比較) -)

  • Han, Sang Sup;Kim, Sun Hee;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.220-229
    • /
    • 1998
  • This study was performed to compare the characteristics of hydraulic conductivity such as relative conductivity(RC), leaf specific conductivity(LSC), Huber value(HV), specific conductivity(SC), and diameter of vessels(${\mu}m$) and number of vessels($No./mm^2$) in branch junctions of the twenty-one deciduous broad-leaved species. The hydraulic conductivities of branch junctions decreased with increasing junction angle between stem and branch, and with decreasing diameter of branch. The RC and LSC of branch junctions related to branching types(ㅏ, Y, ${\Psi}$ type) were much lower in ㅏ and ${\Psi}$ types than in Y type. The diameter and number of vessels remarkably reduced in branch junctions as compared with the stem and branch.

  • PDF

An Analyical Study for Estimating Passenger Car Equivalents of Heavy Vehicles (대형차의 승용차 환산계수의 산정을 위한 해석적 연구)

  • 박창호;윤항묵;전경수
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.2
    • /
    • pp.99-107
    • /
    • 1990
  • This research addresses the effect of heavy vehicles (especially trucks) in terms of passenger car Equivalents from a capacity viewpoint. A formulation that estimate PCE in this paper is derived by introducing appropriate headway measurements into Huber's general equation for PCEs. In this equation, PCE value is expressed in terms of headways for four different kinds of pairs; pairs of leading and following vehicles ; P-P, P-T, P-T, T-T. The mean value of headway for each case is estimated through the regression analysis. Finally, the approach used in this research was compared with macroscopic approach which analyzed a speed-density relationship to evaluate PCE.

  • PDF

Reduced-mass Adaptive TMD for Tall Buildings Damping

  • Weber, Felix;Huber, Peter;Spensberger, Simon;Distl, Johann;Braun, Christian
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Tall buildings are prone to wind-induced vibrations due to their slenderness whereby peak structural accelerations may be higher than the recommended maximum value. The common countermeasure is the installation of a tuned mass damper (TMD) near the highest occupied floor. Due to the extremely large modal mass of tall buildings and because of the narrow to broad band type of wind excitation the TMD mass may become inacceptable large - in extreme cases up to 2000 metric tons. It is therefore a need to develop more efficient TMD concepts which provide the same damping to the building but with reduced mass. The adaptive TMD concept described in this paper represents a solution to this problem. Frequency and damping of the adaptive TMD are controlled in real-time by semi-active oil dampers according to the actual structural acceleration. The resulting enhanced TMD efficiency allows reducing its mass by up to 20% compared to the classical passive TMD. The adaptive TMD system is fully fail-safe thanks to a smart valve system of the semi-active oil dampers. In contrast to active TMD solutions the adaptive TMD is unconditionally stable and its power consumption on the order of 1 kW is negligible small as controllable oil dampers are semi-active devices. The adaptive TMD with reduced mass, stable behavior and lowest power consumption is therefore a preferable and cost saving damping tool for tall buildings.

Analysis of Water Relations of Economic Oak Species by Hydraulic Architecture Method (Hydraulic architecture를 이용한 참나무속 주요 수종의 수분 특성 분석)

  • Kwon, Ki Won;Choi, Jeong Ho;Kim, Sun Ah
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.108-119
    • /
    • 1996
  • Several parameters of hydraulic architecture relating to hydraulic conductance in xylem vessels were investigated in the current-year shoots of six species of deciduous oak trees. The above parameters were also investigated in the sprouts of Quercus mongolica and Q. variabilis, as well as in the seedlings of Q. mongolica and Q. acutissima. The values of specific conductivity, leaf specific conductivity and Hagen-Poiseuille's relative hydraulic conductivity relating to vessel diameter of Q. dentata were the highest in all of the species studied. The above values of most of the species studied were higher in May-June than in September-October because of increasing the vessel embolism by cavitation and so on through the growing season. The estimated values of relative hydraulic conductivity of vessel by Hagen-Poiseuille's empirical equation and the real values of hydraulic conductivity presented positive relationships in most of the species studied. Huber value and leaf specific conductity using leaf area or leaf weight generally exhibited similar patterns each other even if having some exceptions. The hydraulic conductances of sprouting shoots were much better than those of normal growing shoots in Q. rnongolica and Q. variabilis. The specific conductivity and leaf specific conductivity were rapidly decreased by the vessel embolism through cavitating just after cutting the shoots in Q. mongolica and Q. acutissima seedlings. Diurnal changes of the conductivities in the seedlings of Q. mongolica and Q. acutissima presented the possibility of their self-controlling of conductance by active moisture absorption under mild water stress. Specific conductivity and leaf specific conductivity, and so on of Q. acutissima seedlings subjected to periodical moisture stress or not have decreased through the growing season, but the influences of moisture stress to the conductance were not proved definitely because of influencing similarly and simultaneously to the development of xylem and leaf having inverse relation in the influences. The values of conductivities were higher generally in middle or upper parts of stems than root collar in the seedlings.

  • PDF