• Title/Summary/Keyword: Hub unit

Search Result 48, Processing Time 0.035 seconds

A Study on Quality Improvement through Analysis of Hub-reduction Failure Occurrence Mechanism for Military Vehicles (군용차량 허브리덕션 고장 메커니즘 분석을 통한 품질개선 연구)

  • Kim, Sung-Gon;Kim, Seon-Jin;Yun, Seong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.188-196
    • /
    • 2021
  • For the tactical vehicles operated by the Korean army, the hub-reduction portal axle was applied considering Korea's topographical characteristics. Hub-reduction was applied to a Korean military vehicle to increase the vehicle body to secure ground clearance and improve the driving capability on rough roads, such as unpaved and field land by increasing the torque. The Korean military is operating tactical vehicles after various performance tests, including durability driving, but wheel damage occurred in one of the vehicles operating in the front units. Failure analysis revealed many damaged parts, including the hub, making it difficult to determine the cause. Therefore, an analysis of the failure occurrence mechanism for each damaged part was conducted, which confirmed that the cause of wheel breakage was a hub. Furthermore, the root cause of the hub breakage was a crack due to internal pores and foreign matters. In addition, a realistic improvement plan that can be applied throughout the design, manufacture, and shipping stages was presented using the fishbone diagram analysis. The derived improvement plan was verified through unit performance tests, including CAE and actual vehicle tests, and by reflecting this, the driving safety of Korean tactical vehicles was improved. Finally, it is expected that the proposed method for analyzing the failure occurrence mechanism will be used as reference material when analyzing the quality problems of similar military vehicles in the future.

Omnidirectional Mobile Robot Capable of Variable Footprinting Based on Hub-Type Drive Module (허브형 구동모듈 기반의 가변접지 기능을 갖는 전방향 이동로봇)

  • Kim, Hyo-Joong;Cho, Chang-Nho;Kim, Hwi-Su;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.289-295
    • /
    • 2012
  • In recent years, an increased amount of research has been carried out on mobile robots to improve the performance of service robots. Mobile robots maximize the mobility of service robots, thus allowing them to work in different areas. However, conventional service robots have their center of mass placed high above the ground, which may cause them to fall when moving at high speed. Furthermore, hub-type actuators, which are often used for mobile robots, are large and expensive. In this study, we propose a mobile robot with a hub-type actuator unit and a variable footprint mechanism. The proposed variable footprint mechanism greatly improves the stability and mobility of the robot, allowing it to move freely in a narrow space and carry out various tasks. The performance of the proposed robot is verified experimentally.

Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units (Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구)

  • 김기훈;유영면;임종순;현준수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF

Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit (휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측)

  • 김기훈;유영면;임종순;이상훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF

Development of a fatigue life Prediction Program for the Hub Bearing Unit (허브 베어링 유닛 수명 예측 프로그램 개발)

  • Hwang Chul-Ha;Jun Kab-Jin;Yoon Ji-Won;Park Tae-Won;Kim Seung-Hak;Yi Kyung-Don
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.142-151
    • /
    • 2005
  • To predict the fatigue life of the Hub Bearing Unit(HBU), preload effect and initial axial clearance have to be considered. Various theory and equations for the HBU design used in the passenger car are well developed in many literatures. But most design hand book for bearings or bearing catalogues do not consider the initial axial clearance and preload effect. So there are limits and difficulties to use those data in actual bearing design. To consider the preload effect and initial axial clearance, complex elliptic integrals and nonlinear equations are involved. These equations are difficult to solve during the design process. In order to solve these problems effectively, a program is developed to solve these equations reliably and to help the designer in obtaining the performance data of the HBU such as load distribution, maximum contact stress and fatigue life. The preprocessor of the program helps users to prepare the input data through a dialog box and the post processor makes graphical presentation of the result. In this paper, theoretical and numerical background for the prediction of the fatigue life of the HBU is explained. A simple example is presented to show the usefulness of developed program.

Economic analysis by reduction of calling port and mega containership (선박 대형화 및 기항지 축소에 따른 경제성 분석)

  • 남기찬;곽규석;송용석;김태원;오효진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.413-419
    • /
    • 2004
  • In these days, 8,000TEU container ship service launches in shipping service at latest based on the economy of scale, unit cost related with ship operation on ocean decreases in proportion to increase of ship scale and mega ship over 10,000TEU is on planning. Most of the exiting researches have performed from the perspective of total operation cost from mega port to mega port. However, the purpose of this paper is to estimate economic efficiency by ports selected Hub port from total cost point of view, operation cost, port charge, feeder cost, etc.

  • PDF

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.

Technical Development Status and Market Prospects for High Altitude Wind Power Generation System (공중 풍력발전 기술개발 현황 및 시장전망)

  • Kang, Seung-Won;Gil, Doo-Song;Park, Dong-Su;Jung, Won-Seoup;Kim, Eui-Hwan
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.36-42
    • /
    • 2011
  • The wind speed at the altitude around 300 m is much higher and less variable than at the altitude around 80 m which is the same height of the MW class tower turbine's hub height. The wind power density is increased 0.37 W/$m^2$ per meter at the altitude around 6 to 7 km and 0.25 W/$m^2$ per meter at the altitude around 80 to 500 m. There are two types of power generation systems using lifting bodies. The one is that The generator is installed in the ground station and stretched into the lifting body through the tether. The other is that the generator is installed in the lifting body and stretched into the ground station through the tether. Many kinds of lifting bodies are also researched in the world, called kites, wings, single or twin aerostat, and so on. This article introduced the technical development status and the market prospects of the high altitude wind power generation system all over the world in detail.

A Study on High Efficiency Operation Method and Design of Power Control Mechanism for Small Wind Turbine System (소형 풍력발전 시스템의 고효율 운용 방법 및 출력 제어 장치 설계에 관한 연구)

  • Bang Jo-Hyug;Oh Kyung-Won;Park Jong-Ha;Kong Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.210-214
    • /
    • 2004
  • This study proposes a design method for blade pitch control mechanism in order to regulate the power and to improve the starting characteristic. This power control unit which is assembled by spring and mass is planing to equip with 1kW class wind turbine system which is developed for low wind speed area like Korea. For the design of this control unit, the proper geometry of the hub was designed and the calculation of the mechanics was carried out. Especially, It is expected that the operational efficiency will be improved because of additional high pitch starting function by using 2 step spring structure.

  • PDF

CFD APPLICATION TO THE REGULATORY ASSESSMENT OF FAC-CAUSED CANDU FEEDER PIPE WALL THINNING ISSUE

  • Kang, Dong-Gu;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.37-48
    • /
    • 2008
  • Flow fields inside feeder pipes have been simulated numerically using a CFD (computational fluid dynamics) code to calculate the shear stress distribution, which is the most important factor in predicting the local regions of feeder pipes highly susceptible to FAC (flow-accelerated corrosion)-induced wall thinning. The CFD approach, with schemes used in this study, to simulate the flow situations inside the CANDU feeder pipes has been verified as it showed a good agreement between the investigation results for the failed feedwater pipe at Surry unit 2 plant in the U.S. and the CFD calculation. Sensitivity studies of the three geometrical parameters, such as angle of the first and second bends, length of the first span between the grayloc hub and the first bend, and length of the second span between the first and the second bends have been performed. CFD analysis reveals that the local regions of feeder pipes of Wolsung unit 1 in Korea, on which wall thickness measurements have been performed so far, are not coincident with the worst regions predicted by the present CFD analysis located in the connection region of straight and bend pipe near the inlet part of the bend intrados. Finally, based on the results of the present CFD analysis, a guide to the selection of the weakest local positions where the measurement of wall thickness should be performed with higher priority has been provided.