• Title/Summary/Keyword: Hub space

Search Result 128, Processing Time 0.025 seconds

An Analysis on Spatial Characteristics in the Center Villages of Hub-Myun Site (농촌 거점면 중심지의 공간구조 특성 분석)

  • Lim, Chang-Su;Choi, Soo-Myung;Sim, Hwan-Hwi
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2009
  • This study tried to establish a tentative renewal guideline on spatial structure of the Hub-myun's center villages which would be positioned as sub-centers in the rural settlement hierarchy in Korea. Space Syntax Method was used to analyze the locational characteristics of community facilities in the center villages of 8 pilot project areas which were selected in the nationwide scale. The base-maps for spatial analysis works were prepared firstly from satellite pictures and adjusted through field check. Generally, connectivity and global integration values of center villages were calculated as higher than hinterland villages, which would mean better accessible spatial characteristics in the center villages. And a tentative renewal guideline was proposed for road route improvement and relocation of community facilities in the Hub-myun's center villages.

Design and Construction of Collaboration Hub 2.0 based on BPM (BPM 기반의 협업허브 2.0 설계와 구현)

  • Kim, Bo-Hyun;Jung, So-Young;Choi, Hon-Zong;Lee, Sung-Jin;Jang, Jin-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.414-423
    • /
    • 2011
  • The collaboration hub has been developed since 2004 as an online collaboration space, which supports the various collaborative works amongst small and medium enterprises using information sharing, collaboration project management, and project history management. Because of the change of manufacturing environment and rapid development of information technologies, it should be evolved from the existing version called Collaboration Hub 1.0. Recently, a lot of manufacturing enterprises know the importance of business process management(BPM) and start to introduce BPM systems. Our research group has developed the new version of Collaboration Hub 1.0 called Collaboration Hub 2.0 which contains the BPM concept, the consistent product data management, and the specialized functions overcoming the various variation of manufacturing. This study scrutinizes the meaning and role of the Collaboration Hub 2.0 and introduces an application study of it to the value chain of automobile module development consisted of a leading company and subcontractors. The case study covers the definition, execution and monitoring of collaboration process, the specialized functions overcoming the manufacturing variation and the key performance index of collaboration business.

An Experimental Study of Aeroelastic Stability of Hingeless Hub System with Metal and Composite Hub Flexure (금속재와 복합재 허브 Flexure를 갖는 무힌지 허브시스템의 공력탄성학적 안정성에 관한 실험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan;Rhee, Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • This paper presents the result of the aeroelastic stability test of the small-scaled hingeless hub system with composite paddle blades in hover and forward flight conditions. Excitation tests of hingeless hub system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, blades with metal flexures, then with composite flexures of the same dynamic properties of rotor system as metal one were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Composite flexures were found to have better damping characteristics over metal ones in the non-rotating vibration test, and it was confirmed that the use of composite flexures would give observable improvement in aeroelastic stability compared to metal ones in all test conditions.

OUTPUT FEEDBACK SLEWING CONTROL OF FLEWIBLE SPACECRAFT BY LYAPUNOV STABILITY THEORY

  • Kim, Dae-Sik;Kim, Chun-Hwey;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.367-374
    • /
    • 1997
  • Slewing maneuver and vibration suppression control of flexible spacecraft model by Lyapunov stability theory are considered. The specific model considered in this paper consists of a rigid hub with an elastic appendage attached to the central hub and tip mass. Attitude control to point and stabilize single axis using reaction wheel type device is tested. To control all flexible modes is so critical to designing an active control law. We therefore considered an direct output feeback control design by using Lyapunov stability theory. It is shown that the ouput feedback control law design with proposed configuration gives satisfactory result in slewing performance and vibration suppression control.

  • PDF

Design of an Elastomeric Bearing for a Helicopter Rotor Hub by Non-linear Finite Element Method (비선형 유한요소법을 이용한 헬리콥터 로터허브용 탄성체베어링 설계)

  • Kim, Hyun-Duk;Yoo, Si-Yoong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.612-619
    • /
    • 2010
  • In this paper, an elastomeric bearing for a helicopter rotor hub is designed using nonlinear finite element method. The elastomeric bearing is the main component of the helicopter rotor hub that acts as a hinge to three motions(flapping, lagging and pitching) of rotor blade. The elastomeric bearing consists of rubber and metal plates. The stiffness design of the elastomeric bearing is important because elastic deformation of rubber is served to hinge. Accordingly, the elastomeric bearing is designed to satisfy the stiffness requirements for rotor hub bearing. In this study, a FE model generation algorithm is developed and stiffness characteristic of a rubber plate is analyzed for an efficient design of the spherical elastomeric bearing. It is proven that the elastomeric bearing satisfies stiffness requirements of the spherical bearing for a helicopter rotor hub.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Hingeless Blade Flexure Bending Stiffness Reinforcement for Whirl Tower Test (훨타워 시험 수행을 위한 무힌지 블레이드 플렉셔 굽힘 강성 보강)

  • Kim, Taejoo;Kee, Youngjoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.390-397
    • /
    • 2014
  • BO-105 helicopter applies hingeless rotor hub system and blade root uses a flexure of hingeless rotor hub system. So bending stiffness reinforcement for flexure was conducted for preparation of whirl tower test using BO-105 blade. Bending moment of flexure area was calculated with FE modeling of section shape for stiffness reinforcement of flexure and thickness of composite material for reinforcement was chosen. Flexure bending stiffness reinforcement was conducted and bending stiffness measurement test was performed before and after bending stiffness reinforcement. And the test data are compared with analysis results.

A Study on the Airport and Airspace Management (공항 및 공역관리 제도 개선에 관한 연구)

  • Kim, Byeong-Jong;Yang, Han-Mo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.12
    • /
    • pp.246-274
    • /
    • 2000
  • This paper discusses the qualification criteria for international hub airport and suggests the strategies for Inchon International Airport (IIA) to be the hub airport in the East Asia. Recently, many East and Southeast Asia countries have invested on large scale international airports like Chap Lak Kok airport, Pudong airport etc.. as Korea have done on IIA. IIA to be open in 2001 will face a serious competition with these airport. Being a hub airport requires geographic proximity. sufficient volume of local traffic. uncongested infrastructure, a good accessibility to surrounding industrial centers. high quality of service to the airline. In order to promote airlines to land at IIA. Korea Government need to establish Open Sky Policy to many countries and national flag carriers of Korea need to be involved in a global alliance. Developing vicinity of IIA as free trade zone will generated more local traffic which makes IIA as more attractive candidate for airlines. The Korea airspace is one of the most restricted area in the world becuase of the national security. which limits civil aircraft maneuvers. The airspace need to be re-structured to exploit the full capacity of IIA.

  • PDF