• Title/Summary/Keyword: Hub bolt

Search Result 7, Processing Time 0.019 seconds

A Study on Structural Safety Analysis of Hub Space (허브스페이스의 구조적 안전성 해석에 대한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.352-359
    • /
    • 2015
  • This study investigates the analysis result of structure and fatigue due to the models of the hub space with bolt joint at wheel and the existence or nonexistence of hub ring as the part of suspension system of vehicle. As the static analysis result, the structural vulnerability can be found at hub bolt and the center of wheel at three models. Model 2 and 3 have nearly same deformation and model 1 can be endured at the least load among three models. As the fatigue analysis result, fatigue lives of three models are same at the severest load of SAE bracket history. As many screw threads of weak bolts are jointed in case of model 1, model 1 is shown to be the weakest at fatigue damage among three models. By the result of this study, model 1 with bolt joint becomes most weakest among three models. As model 2 with no hub ring and model 3 with hub ring have the nearly same states of analysis results, hub ring is shown to have no influence on the safety of automotive driving.

An Analysis of Plastic Deformation Developed During Interference Fitting of Disk Brake Hub Bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.407-411
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit(bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

An analysis of plastic deformation occurring by interference fit of disk brake hub bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF

Structural Analysis and Test of Composite Wind Turbine Blade (풍력발전기용 복합재 윈드터빈 블레이드의 구조해석 및 실험)

  • Jung Sung-Hoon;Park Ji-Sang;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.121-124
    • /
    • 2004
  • The purpose of this study is to define the optimized layer pattern of composite wind turbine blade by using a commercial FEM program and to perform the fatigue test of T-Bolt. FEM analysis is done by using a PATRAN and ABAQUS to get a information about stress distribution ,critical deformation shape and get a critical load factor in local buckling analysis. As a result of the linear and nonlinear structural analysis, layer pattern of blade was optimized. T-Bolt is a connecting part of wind turbine blade and rotor hub, therefore T-bolt is cirtical part of wind turbine blade. T-bolt fatigue test is conducted to get a information of life cycle of T-bolt. The test is done by using a hydraulic actuator system

  • PDF

Design and Prototyping of Lifting Devices for Manhole Cover using Structural Analysis and 3D Printing (3D 프린팅과 구조해석을 이용한 맨홀의 부양장치 설계 및 제작)

  • Lee, Hyoungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.648-654
    • /
    • 2018
  • In order to maintain manholes installed on the road, the manhole should be easy to open and close. Manhole covers under harsh conditions require that they can be lifted when attempting to open the manhole because the frame and cover are stuck and difficult to open and close. In this study, the design of a lifting mechanism was carried out to improve and integrate the locking type manhole. The mechanism of the locking manhole is that when the bolt located at the center is turned, the hub connected with the bolt descends, and the hook connected to the hub is rotated. The end of the hook is hooked to the manhole frame. The auxiliary device was installed on the hook so that the manhole cover can be lifted. The structure was designed to endure about 300kg of lifting force based on 70% of the yield stress of the hook to perform lifting function. The shape design was performed through the structural analysis using the finite element method. First, the basic design was performed with the simplified 2-dimensional model and the attachment position and shape were designed through the 3-dimensional model. In order to find out the structural problems of the designed shape, the scale downed model was fabricated through 3D printing and confirmed that the lifting function worked. Finally, it was confirmed that both the locking and the average lifting of about 6.1 mm can be done by applying the lifting mechanism through the machining and applying it to the existing locking manhole.

Design of Propulsion Shafting System for Controllable Pitch Propeller (I : Latout Design with Sizing) (가변추진기 추진축계시스템의 설계 (제 I 보 : 외형설계 ))

  • 김기인;전효중;박명규;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.129-134
    • /
    • 2002
  • This study is focused on the layout design with sizing for the main propulsion shafting with controllable pitch propeller system. For appropriate design and successful manufacturing of controllable pitch Propeller system, it is based on specifications to be required from the customer as well as the stresses calculation and analysis of main propulsion system for hollow shafting. And it must be performed according to the U.S military specifications MIL-STD-2189(SH) with drawing of NAVSHIPS 803-2145807, and also the stress analysis by applying safety factor. The results are as follows : 1. For the main propulsion system with controllable pitch propeller, it is designed the following items propeller diameter, hub diameter, dimensions of oil distribution or actuating unit based on shaft mounting type, diameters of propeller and intermediate shaft, dimension of split muff coupling, coupling flange thickness and of coupling bolt diameter. 2. As the results, we can get complete our own design ability for the main propulsion shafting with controllable pitch propeller system with critical data which are necessary to establish shafting arrangement from the ship building companies.

  • PDF

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF