• Title/Summary/Keyword: Hu 모멘트

Search Result 25, Processing Time 0.027 seconds

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

전이금속이 도핑된 Si 박막의 열처리 효과에 따른 구조 및 자기적 성질

  • Seo, Ju-Yeong;Park, Sang-U;Lee, Gyeong-Su;Song, Hu-Yeong;Kim, Eun-Gyu;Son, Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.184-184
    • /
    • 2011
  • 반도체 전자 소자의 초고집적회로(VLSI, Very Large Scale Integrated Circuit)가 수년간 지속됨에 따라 실리콘 기반으로 하는 MOSFET 성능의 한계에 도달하게 되었다. 재료 물성, 축소, 소자 공정 등에 대한 원인으로 이를 극복하고자 하는 재료와 성능향상에 관한 연구가 진행되고 있다. 이에 기존 시스템의 전자의 전하 정보만을 응용하는 것이 아니라 전자의 스핀 정보까지 고려하는 스핀트로닉스 연구분야가 주목을 받고 있다. Spin-FET는 스핀 주입, 스핀 조절, 스핀측정 등으로 나뉘어 연구되고 있으며 이 중 스핀 주입의 효율 향상이 우선시 해결되어야 한다. 일반적으로 스핀 주입 과정에서 소스가 되는 강자성체와 스핀 확산 거리가 긴 반도체 물질과의 Conductance mismatch가 문제되고 있다. 이에 자성 반도체는 근본적인 문제를 해결하고 반도체와 자성체의 특성을 동시에 나타내는 물질로써, Si과 Ge (4족) 등의 반도체뿐만 아니라, GaAs, InP (3-5족), ZnO, ZnTe (2-6족) 등의 반도체 또한 많은 연구가 이루어지고 있다. 자성 반도체에서 해결해야 할 가장 큰 문제는 물질이 자성을 잃는 Curie 온도를 상온 이상으로 높이는 것이다. 이에 본 연구는 전이금속이 도핑된 4족 Si 반도체 박막을 성장하고 후처리 공정을 통하여 나타나는 구조적, 자기적 특성을 연구하였다. 펄스 레이저 증착 방법을 통하여 p-type Si 기판위에 전이금속 Fe이 도핑된 박막을 500 nm 로 성장하였다. 성장 온도는 $250^{\circ}C$로 하였고, 성장 분압은 $3 {\times}10^{-3}$Torr 로 유지하며 $N_2$ 가스를 사용하였다. 구조적 결과를 보기 위해 X선 회절 분석과 원자력 현미경 결과를 확인하였고, 자기적 특성을 확인하기 위해 저온에서 초전도 양자 간섭계로 조사하였다. XRD를 통해 (002)면, (004)면의 Si 기판 결정을 보았으며, Fe 관련된 이차상이 형성됨을 예측해 보았다. ($Fe_3Si$, $Fe_2Si$ 등) 초전도 양자 간섭계에서 20 K에서 측정한 이력 현상을 관찰하고, 온도변화에 따른 전체 자기모멘트를 관찰하였으며 이는 상온에서도 강자성 특성이 나타남을 확인하였다.

  • PDF

Analysis on lower extremity joint moment during a developpe devant (Developpe devant 수행시 하지 관절 모멘트 분석)

  • Park, Ki-Sa;Shin, Sung-Hu;Kwon, Moon-Seok;Kim, Tae-Hwan;Lee, Hung-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.133-144
    • /
    • 2004
  • The purpose of this study was to analyze the joint moment on lower extremity during a developpe devant. Data were collected by Kwon3D, KwonGRF program. Two professional modem female dancers were participated in this experiment. Subjects performed a developpe devant in meddle heights. On the axes of X, Y, Z, it was shown that the maximum joint moment was occurred in hip joint. The moments are plotted during developpe devant. The ankle muscles generate a plantar flexion moment and the knee muscles generate a flexion moment and The hip muscles generate a extension moment. So these muscles of joint muscles were known to play a key role in keeping the body balance while doing developpe devant. In addition adduction moment occurred at hip, knee, an ankle in the order of amount, we could assume from this data that him out motion started from the hip joint. There was small active turn out possible below the hip joint. A small amount of extra turn out could be obtained when standing because of flexion between the foot and floor, which could be used to give a passive external rotation force to the whole leg and this could produce a rotation between the knee and foot. This passive external rotation could produce very damaging results. Therefore, lower extremity joint muscles such as hip, knee, and ankle muscle should be trained to keep the body balance and prevent injury during developpe devant performance. And for the safe and perfect turn ort performance, hip joint abduction, the most important external rotating muscle for him out is needed to train and full stretching should be done in advance.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Segmentation Method of Overlapped nuclei in FISH Image (FISH 세포영상에서의 군집세포 분할 기법)

  • Jeong, Mi-Ra;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.131-140
    • /
    • 2009
  • This paper presents a new algorithm to the segmentation of the FISH images. First, for segmentation of the cell nuclei from background, a threshold is estimated by using the gaussian mixture model and maximizing the likelihood function of gray value of cell images. After nuclei segmentation, overlapped nuclei and isolated nuclei need to be classified for exact nuclei analysis. For nuclei classification, this paper extracted the morphological features of the nuclei such as compactness, smoothness and moments from training data. Three probability density functions are generated from these features and they are applied to the proposed Bayesian networks as evidences. After nuclei classification, segmenting of overlapped nuclei into isolated nuclei is necessary. This paper first performs intensity gradient transform and watershed algorithm to segment overlapped nuclei. Then proposed stepwise merging strategy is applied to merge several fragments in major nucleus. The experimental results using FISH images show that our system can indeed improve segmentation performance compared to previous researches, since we performed nuclei classification before separating overlapped nuclei.