• 제목/요약/키워드: HscA

검색결과 261건 처리시간 0.035초

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • 한국자기공명학회논문지
    • /
    • 제28권2호
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

Slenderness limit for SSTT-confined HSC column

  • Khun, Ma Chau;Awang, Abdullah Zawawi;Omar, Wahid
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.201-214
    • /
    • 2014
  • Due to the confinement effects, Steel-Straps Tensioning Technique (SSTT) can significantly enhance the strength and ductility of high-strength concrete (HSC) members (Moghaddam et al. 2008). However, the enhancement especially in strength may result in slender member and more susceptible to instability (Jiang and Teng 2012a). This instability is particularly significant in HSC member as it inherent the brittle nature of the material (Galano et al. 2008). The current slenderness limit expression used in the design is mainly derived from the experiment and analysis results based on Normal strength concrete (NSC) column and therefore the direct application of these slenderness limit expressions to the HSC column is being questioned. Besides, a particular slenderness limit for the SSTT-confined HSC column which incorporated the pre-tensioned force and multilayers effects is not yet available. Hence, an analytical study was carried out in the view of developing a simple equation in order to determine the slenderness limit for HSC column confined with SSTT. Based on the analytical results, it was concluded that the existing slenderness limit expressions used in the design are appropriate for neither HSC columns nor SSTT-confined HSC columns. In this paper, a slenderness limit expression which has incorporated the SSTT-confinement effects is proposed. The proposed expression can also be applied to unconfined HSC columns.

Long-term exposure to gefitinib differentially regulates the endosomal sorting complex required for transport machinery, which accelerates the metastatic potential of oral squamous cell carcinoma cells

  • Mi Seong Kim;Min Seuk Kim
    • International Journal of Oral Biology
    • /
    • 제48권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Oral squamous cell carcinoma (OSCC), which accounts for approximately 90% of oral cancers, has a high rate of local recurrence and a poor prognosis despite improvements in treatment. Exosomes released from OSCC cells promote cell proliferation and metastasis. Although it is clear that the biogenesis of exosomes is mediated by the endosomal sorting complex required for transport (ESCRT) machinery, the gene expression pattern of ESCRT, depending on the cell type, remains elusive. The exosomal release from the human OSCC cell lines, HSC-3 and HSC-4, and their corresponding gefitinib-resistant sub-cell lines, HSC-3/GR and HSC-4/GR, was assessed by western blot and flow cytometry. The levels of ESCRT machinery proteins, including Hrs, Tsg101, and Alix, and whole-cell ubiquitination were evaluated by western blot. We observed that the basal level of exosomal release was higher in HSC-3/GR and HSC-4/GR cells than in HSC-3 and HSC-4 cells, respectively. Long-term gefitinib exposure of each cell line and its corresponding gefitinib-resistant sub-cell line differentially induced the expression of the ESCRT machinery. Furthermore, whole-cell ubiquitination and autophagic flux were shown to be increased in gefitinib-treated HSC-3 and HSC-4 cells. Our data indicate that the expression patterns of the ESCRT machinery genes are differentially regulated by the characteristics of cells, such as intracellular energy metabolism. Therefore, the expression patterns of the ESCRT machinery should be considered as a key factor to improve the treatment strategy for OSCC.

Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass

  • Haido, James H.;Zainalabdeen, Marwa A.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.239-253
    • /
    • 2021
  • The behavior of concrete containing waste glass as a replacement of cement or aggregate was studied previously in the most of researches, but the present investigation focuses on the recycling of waste glass powder as a substitute for silica fume in high strength concrete (HSC). This endeavor deals with the efficiency of using waste glass powder, as an alternative for silica fume, in the flexural capacity of HSC beam. Thirteen members with dimensions of 0.3 m width, 0.15 m depth and 0.9 m span length were utilized in this work. A comparison study was performed considering HSC members and hybrid beams fabricated by HSC and conventional normal concrete (CC). In addition to the experiments on the influence of glass powder on flexural behavior, numerical analysis was implemented using nonlinear finite element approach to simulate the structural performance of the beams. Same constitutive relationships were selected to model the behavior of HSC with waste glass powder or silica fume to show the matching between the modeling outputs for beams made with these powders. The results showed that the loading capacity and ductility index of the HSC beams with waste glass powder demonstrated enhancing ultimate load and ductility compared with those of HSC specimens with silica fume. The study deduced that the recycled waste glass powder is a good alternative to the pozzolanic powder of silica fume.

ECC로 피복된 고강도콘크리트 부재의 폭렬억제성능에 관한 연구 (A Study on the Anti-Spalling Performance of High-Strength Concrete Members by covered Engineered Cementitious Composite)

  • 이재영;김재환;한병찬;박선규;권영진
    • 한국화재소방학회논문지
    • /
    • 제22권4호
    • /
    • pp.85-94
    • /
    • 2008
  • 본 연구는 HSC의 폭렬제어 및 내화성능 확보 방안 중 하나인, HSC에 내화성능을 갖는 피복층을 형성하는 방안에 대하여, 피복층을 ECC로 이용하는 경우 이에 대한 화재성상 및 내화특성을 실험적으로 검토하고, 수열온도 예측 등과 같은 내화설계를 위한 기초자료를 제시하기 위한 것이다. 이를 위하여 HSC 부재에 대한 내화시험을 실시하였다. 실험변수는 ECC의 피복층 두께(20, 30, 40 mm), 시공방식(라이닝, 보수)으로 하였으며, 비교 및 검증을 위하여 피복층이 없는 HSC 및 FRCC 2종류의 충전두께의 변화에 따른 실험을 실시하였다. 도입 화재하중은 ISO 834 기준 3시간 가열곡선으로 하였으며, 각 깊이별 수열온도, 폭렬 및 균열성상, 중성화깊이를 측정 평가하였다. 실험결과 ECC는 HSC 보다 높은 차열성능을 가지고 있으며, 폭렬저감성능을 확인 할 수 있었다. 또한 회귀분석을 통하여 ECC를 HSC의 피복층으로 사용하는 경우에 대한 수열온도 간편 예측식을 제시하였으며, 이에 대한 검증을 실험결과를 통해 수행하였고 HSC를 이용한 부재에 대한 본 예측식의 적용 방법을 제시하였다.

하이브리드 슈퍼코팅(HSC)과 유리섬유를 통한 조적조 내진보강 연구 (Experimental Study of Hybrid Super Coating (HSC) and Cast Reinforcement for Masonry Wall)

  • 이가윤;문아해;이승준;김재현;이기학
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.213-221
    • /
    • 2021
  • Many Korean domestic masonry structures constructed since 1970 have been found to be vulnerable to earthquakes because they lack efficient lateral force resistance. Many studies have shown that the brick and mortar suddenly experience brittle fracture and out-of-plane collapse when they reach the inelastic range. This study evaluated the seismic retrofitting of non-reinforced masonry with Hybrid Super Coating (HSC) and Cast, manufactured using glass fiber. Four types of specimen original specimen (BR-OR), one layered HSC (BR-HS-O), two-layered HSC (BR-HS-B), one layered HSC, and Cast (BR-CT-HS-O) were constructed and analyzed using compression, flexural tensile, diagonal compression, and triplet tests. The specimen responses were presented and discussed in load-displacement curves, maximum strength, and crack propagation. The compressive strength of the retrofit specimens slightly increased, while the flexural tensile strength of the retrofit specimens increased significantly. In addition, the HSC and Cast also produced a considerable increase in the ductile response of specimens before failure. Diagonal compression test results showed that HSC delayed brittle cracks between the mortar and bricks and resulted in larger displacement before failure than the original brick. The triplet test results confirmed that the bonding strength of the retrofit specimens also increased. The application of HSC and Cast was found to restrain the occurrence of brittle failure effectively and delayed the collapse of masonry wall structures.

Flexural ductility of HSC members

  • Maghsoudi, A.A.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.195-212
    • /
    • 2006
  • In seismic areas, ductility is an important factor in design of high strength concrete (HSC) members under flexure. A number of twelve HSC beams with different percentage of ${\rho}$ & ${\rho}^{\prime}$ were cast and incrementally loaded under bending. The effect of ${\rho}^{\prime}$ on ductility of members were investigated both qualitatively and quantitatively. During the test, the strain on the concrete middle faces, on the tension and compression bars, and also the deflection at different points of the span length were measured up to failure. Based on the obtained results, the serviceability and ultimate behavior, and especially the ductility of the HSC members are more deeply reviewed. Also a comparison between theoretical and experimental results are reported here.

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • 제2권1호
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.

고강도 콘크리트의 폭렬발생 및 폭렬저감 메커니즘에 관한 문헌적 고찰 (A Study on the Mechanism of Explosive Spalling and Spalling Prevention Methods of High-Strength Concrete in Fire Temperature)

  • 정희진;이재영;김재환;한병찬;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.313-316
    • /
    • 2008
  • Nowadays, the use of high strength concrete has become increasingly popular. Thus, the theory of this study gives a definition of HSC mechanism through study factors of spalling occurrence of HSC and solutions of failure mechanism. During the fire goes on, building structure using HSC causes explosive spalling and finally it gets to the breaking of the structure down. As a result of this failure mechanism, it remains to be investigated to prevent from explosive spalling of HSC and needs to provide basic problems of HSC at high temperature.

  • PDF