• Title/Summary/Keyword: Hox cluster

Search Result 6, Processing Time 0.027 seconds

A Phylogenetic Analysis for Hox Linked Gene Families of Vertebrates

  • Kim, Sun-Woo;Jung, Gi-La;Lee, Jae-Hyoun;Park, Ha-Young;Kim, Chang-Bae
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • The human chromosomes 2, 7, 12 and 17 show genomic homology around Hox gene clusters, is taken as evidence that these paralogous gene families might have arisen from a ancestral chromosomal segment through genome duplication events. We have examined protein data from vertebrate and invertebrate genomes to analyze the phylogenetic history of multi-gene families with three or more of their representatives linked to human Hox clusters. Topology comparison based upon statistical significance and information of chromosome location for these genes examined have revealed many of linked genes coduplicated with Hox gene clusters. Most linked genes to Hox clusters share the same evolutionary history and are duplicated in concert with each other. We conclude that gene families linked to Hox clusters may be suggestion of ancient genome duplications.

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.

Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells

  • Yang, Seoyeon;Lee, Ji-Yeon;Hur, Ho;Oh, Ji Hoon;Kim, Myoung Hee
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.450-455
    • /
    • 2018
  • Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

Presence of Proboscipedia and Caudal Gene Homologues in a Bivalve Mollusc

  • Carpintero, Pablo;Pazos, Antonio Juan;Abad, Marcelina;Sanchez, Jose Luis;De La Luz Perez-Paralle, Maria
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.625-628
    • /
    • 2004
  • Homeobox genes encode a family of transcription factors that have essential roles in regulating the development of eukaryotes. Although they have been extensively studied in different phyla, relatively little is known about homeobox-containing genes and their function in molluscs. In this study, we used a polymerase chain reaction to investigate homeobox genes in the bivalve mollusc Pecten maximus. Four different homeobox sequences were identified; two were homologues of the non-Hox cluster gene caudal and the two remaining sequences had a significant homology to the ANT-C gene proboscipedia. These sequences represent the first cad and pb homologues isolated from a member of the class Bivalvia, phylum Mollusca.

Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits

  • Liu, Zhaohua;Tan, Xiuwen;Wang, Jianying;Jin, Qing;Meng, Xianfeng;Cai, Zhongfeng;Cui, Xukui;Wang, Ke
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1340-1350
    • /
    • 2022
  • Objective: Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods: We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (𝜃π) ratio. Results: The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion: The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.