• Title/Summary/Keyword: Hovering Flight

Search Result 105, Processing Time 0.026 seconds

Estimation of Hovering Flight Time of Battery-Powered Multicopters

  • Cho, Mun jin;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2021
  • The estimation of hovering flight time of multicopters using the battery power propulsion system is important for the development and design of the aircraft and its operation. For a given operational weight, the maximum possible battery weight can be decided using both a conventional energy density method and a new Peukert law. In the present study, the hovering flight time is predicted using both methods. The specific data of multicopters in the published literatures were employed for the computation of the hovering flight time. The results were validated with the measured data. The effect of figure of merit of propeller, battery discharging process on the hovering flight time was evaluated, Finally, the effect of the battery cell and package connection types on the hovering time was investigated. It was found that the combination of serial battery cell connections and parallel package connection is the bast in the endurance maximization aspect. As the cell number increases in a package, the hovering flight time is increased. There exists the max. battery ratio for the given takeoff gross weight.

Design of a Mechanism for Reproducing Hovering Flight of Insects (곤충의 호버링 비행을 구현하는 메카니즘의 설계)

  • 정세용;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

A Study on Hovering Flight Control for a Model Helicopter (모형 헬리콥터 정지비행제어에 관한 연구)

  • 심현철;이은호;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1399-1411
    • /
    • 1994
  • A model helicopter has more versatile flight capability than the fixed-wing aircraft and it can be used as an unmaned vehicle in hazardous area. A helicopter, similar to other aircrafts, is an unstable, multi-input multi-output nonlinear system exposed to strong disturbance. So it should be controlled by robust control theories that can be applied to multivariable systems. In this study, motion equations of hovering are established, linearized and transformed into a state equation form. Various parameters are measured and calculated in other to obtain the stability derivatives in the state equation. Hovering flight controller is designed using the digital LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) control theory. The designed controller is tested by the nonlinear simulations and implemented on an IBM-PC/386. Experiments were carried out on a model helicopter attached to the 3-DOF gimbal. The designed controller showed satisfactory hovering capability to maintain the hovering for more than 40 seconds.

Design of hovering flight controller for a model helicopter using a microcontroller (마이크로콘트롤러를 이용한 모형헬리콥터 정지비행 제어기 설계)

  • 박현식;이준호;이은호;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.185-188
    • /
    • 1993
  • The goal of this paper is to develop an on-board controller for a model helicopter's hovering attitude control, using i8096 one-chip microcontroller. Required controller algorithm is programmed in ASM-96 assembly language and downloaded into an i8096 microcontroller. The performance of hovering flight using this system is verified by experiments with the model helicopter mounted on an instrumented flight stand where 3 potentiometers and an optical proximity sensor measure te attitude and main rotor speed of the helicopter.

  • PDF

Implementation of Virtual Instrumentation based Realtime Vision Guided Autopilot System and Onboard Flight Test using Rotory UAV (가상계측기반 실시간 영상유도 자동비행 시스템 구현 및 무인 로터기를 이용한 비행시험)

  • Lee, Byoung-Jin;Yun, Suk-Chang;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.878-886
    • /
    • 2012
  • This paper investigates the implementation and flight test of realtime vision guided autopilot system based on virtual instrumentation platform. A graphical design process via virtual instrumentation platform is fully used for the image processing, communication between systems, vehicle dynamics control, and vision coupled guidance algorithms. A significatnt ojective of the algorithm is to achieve an environment robust autopilot despite wind and an irregular image acquisition condition. For a robust vision guided path tracking and hovering performance, the flight path guidance logic is combined in a multi conditional basis with the position estimation algorithm coupled with the vehicle attitude dynamics. An onboard flight test equipped with the developed realtime vision guided autopilot system is done using the rotary UAV system with full attitude control capability. Outdoor flight test demonstrated that the designed vision guided autopilot system succeeded in UAV's hovering on top of ground target within about several meters under geenral windy environment.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique (Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어)

  • Yang, J.S.;Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF

Unsteady Aerodynamic Analysis for Helicopter Rotor in Hovering and Forward Flight Using Overlapped Grid (중첩 격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석)

  • Im, Dong-Kyun;Wie, Seong-Yong;Kim, Eu-Gene;Kwon, Jang-Hyuk;Lee, Duck-Joo;Park, Soo-Hyung;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.215-223
    • /
    • 2009
  • In this paper, the helicopter aerodynamics is simulated in hovering and forward flight. Also, an overlapped grid technique is applied in this simulation to consider the blade motion and moving effects. The Caradonna & Tung's rotor blade was selected to analyze the unsteady aerodynamics in hovering and non-lift forward flight. Also, the AH-1G rotor blade was selected in forward flight. In forward flight case, the numerical trim was applied to determine the cyclic pitching angles using Newton-Raphson method, and the numerical results were in good agreement with experimental data, especially, the BVI effects were well simulated in advancing side in comparison other numerical results. The governing equation is a three dimensional unsteady Euler equation, and the Riemann invariants condition is used for inflow and outflow at the boundary.

Development of Quad-rotor with Anti-Windup Based PI controller and Hovering Attitude Control Flight Test (적분누적 방지기법 기반 자세제어기를 이용한 쿼드로터 개발과 호버링 자세 제어 비행 실험)

  • Park, Daejin;Park, Cheongeon;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.48-54
    • /
    • 2018
  • This paper deals with a development of a quad-rotor for a hovering attitude control. First, a rotational dynamics are derived to design an attitude controller. The attitude controller is based on PI (Proportional-Integral) controller. For a stable attitude control, an anti-windup method applies to the PI attitude controller. Additionally, a complementary filter is used to obtain more reliable attitude. Gain values of the attitude controllers based on the anti-windup method are obtained through tests. Finally, the quad-rotor with the anti-windup based PI attitude controller is developed and a hovering attitude control flight tests are performed. As a result, the developed quad-rotor is capable of stable hovering.

Two-Dimensional Mechanism of Hovering Flight by Flapping Wings (날개짓에 의한 공중정지비행의 이차원 메카니즘)

  • Kim, Do-Kyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF