• Title/Summary/Keyword: Housing Cost

Search Result 632, Processing Time 0.023 seconds

A Study on the Improvement Direction of Life Safety Codes for High Fire Risk Building Applications (화재위험성이 높은 건축물의 용도를 대상으로 한 인명안전기준의 개선방향)

  • Kwon, Young-Jin;Jin, Seung-Hyeon;Lee, Byeong-Heun;Koo, In-Hyuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.53-54
    • /
    • 2021
  • Grenfell Tower was renovated in 2014 and 2016 at a high cost to replace the exterior materials, windows and co-heating facilities of the building. The exterior materials used during the repair work were sandwich panels filled with polyethylene and plastic, which were expanded on the aluminum metal surface. It is a product called Celotex RS 5000, a low-resolution but inexpensive repair material, and is currently an external material that cannot be used in high-rise buildings. Similar domestic fire cases began to focus social attention on the safety of high-rise buildings through the Busan Residential Complex Fire (2010), Uijeongbu Urban Living Housing Fire (2015), and Ulsan Residential Complex Fire (2020), and residents' safety concerns are increasing. In Korea, the occurrence and risk of similar fires are high, so setting up fire prevention measures through fire case investigation is considered the most basic measure in securing human safety. Therefore, the purpose of this study is to examine the status of fire damage caused by domestic and foreign eruptions, domestic and international research status and related regulations on external materials and windows starting from the Grenfell Tower fire in England.

  • PDF

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Benefits and Challenges of Modular Integrated Construction in Hong Kong: A Literature Review.

  • Abdelmageed, Sherif;Abdelkhalek, Sherif;Zayed, Tarek
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.278-288
    • /
    • 2020
  • Modular Integrated Construction (MiC) has gained quite momentum as it provides solutions for several problems in the construction sector, particularly in Hong Kong. MiC is converting the building into modules and erecting them easily on site providing various benefits, such as cost and time savings, better quality, lower risk, higher sustainability, less injuries and accidents, etc. The MiC is considered the best alternative to traditional construction approaches in solving the huge housing demand problem in many cities all over the world due to the time-saving privilege. The utilization of MiC is facing a lot of challenges, which are considered obstacles to the wide acceptance of this technique in the construction industry in Hong Kong. This, in turn, has led the interests of the research community to investigate its benefits and challenges aiming at addressing several solutions to harness the benefits of this technique and to tackle these challenges. The present research aims to review the main concept of MiC and to determine the benefits and the challenges of implementing MiC in construction industry. The findings of this research highlight the advantages and limitations of incorporating MiC technique in Hong Kong, which will help the stakeholders to effectively utilize this technique in the construction industry.

  • PDF

RC structural system control subjected to earthquakes and TMD

  • Jenchung Shao;M. Nasir Noor;P. Ken;Chuho Chang;R. Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.213-223
    • /
    • 2024
  • This paper proposes a composite design of fuzzy adaptive control scheme based on TMD RC structural system and the gain of two-dimensional fuzzy control is controlled by parameters. Monitoring and learning in LMI then produces performance indicators with a weighting matrix as a function of cost. It allows to control the trade-off between the two efficiencies by adjusting the appropriate weighting matrix. The two-dimensional Boost control model is equivalent to the LMI-constrained multi-objective optimization problem under dual performance criteria. By using the proposed intelligent control model, the fuzzy nonlinear criterion is satisfied. Therefore, the data connection can be further extended. Evaluation of controller performance the proposed controller is compared with other control techniques. This ensures good performance of the control routines used for position and trajectory control in the presence of model uncertainties and external influences. Quantitative verification of the effectiveness of monitoring and control. The purpose of this article is to ensure access to adequate, safe and affordable housing and basic services. Therefore, it is assumed that this goal will be achieved in the near future through the continuous development of artificial intelligence and control theory.

Smart composite repetitive-control design for nonlinear perturbation

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.473-485
    • /
    • 2024
  • This paper proposes a composite form of fuzzy adaptive control plan based on a robust observer. The fuzzy 2D control gains are regulated by the parameters in the LMIs. Then, control and learning performance indices with weight matrices are constructed as the cost functions, which allows the regulation of the trade-off between the two performance by setting appropriate weight matrices. The design of 2D control gains is equivalent to the LMIs-constrained multi-objective optimization problem under dual performance indices. By using this proposed smart tracking design via fuzzy nonlinear criterion, the data link can be further extended. To evaluate the performance of the controller, the proposed controller was compared with other control technologies. This ensures the execution of the control program used to track position and trajectory in the presence of great model uncertainty and external disturbances. The performance of monitoring and control is verified by quantitative analysis. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

Cost-Benefit Analysis of The National Land Census Project and Its Policy Implications (국토센서스 사업의 비용 및 편익분석과 시사점)

  • Lee, Young-Sung;Kim, Kab-Sung;Lee, Choon-Won;Kwon, Dae-Jung;Yu, Hyeon-Ji;Yun, Hyung-Seok;Kim, Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.23-38
    • /
    • 2019
  • The National Land Census Project aims to survey the national land regularly to resolve the land category disagreement and reflect the actual land use. The objective of this study is to investigate whether not only the National Land Census Project but also related land and housing surveys bring about the improvement of social welfare in light of the invested budget, and to measure the project feasibility. The potential benefit after the National Land Census Project is not traded in the market. To determine the economic value of this potential benefit, the Contingent Valuation Method was used. This study utilized the single-bounded and double-bounded dichotomous choice models simultaneously to estimate the project feasibility of the cadastral system improvement. According to this study, cost-benefit ratio of the project was estimated larger than 1, which means that social benefits are larger than social costs.

Multi-objective Optimization Model for Tower Crane Layout Planning in Modular Construction (모듈러 건축의 타워크레인 배치계획 수립을 위한 다중 최적화 모델 개발)

  • Yoon, Sungboo;Park, Moonseo;Jung, Minhyuk;Hyun, Hosang;Ahn, Suho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.36-46
    • /
    • 2021
  • With an increasing trend toward high-rise modular construction, the simultaneous use of tower cranes at a modular construction site has recently been observed. Tower crane layout planning (TCLP) has a significant effect on cost, duration, safety and productivity of a project. In a modular construction project, particularly, poor decision about the layout of tower cranes is likely to have negative effects like additional employment of cranes and redesign, which will lead to additional costs and possible delays. It is, therefore, crucial to conduct thorough inspection of field conditions, lifting materials, tower crane capacity to make decisions on the layout of tower cranes. However, several challenges exist in planning for a multi-crane construction site in terms of safety and collaboration, which makes planning with experience and intuition complicated. This paper suggests a multi-objective optimization model for selection of the number of tower cranes, their models and locations, which minimizes cost and conflict. The proposed model contributes to the body of knowledge by showing the feasibility of using multi-objective optimization for TCLP decision-making process with consideration of trade-offs between cost and conflict.

Estimation of the Value of Road Traffic Noise within Apartment Housing Prices (아파트가격에 내재된 도로교통소음가치 추정)

  • 임영태;손의영
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.19-33
    • /
    • 2001
  • In the developed countries, traffic noise is one of most serious problems faced by people's lives. So the importance of the traffic noise is quite well recognized by the infrastructure planners as well as the people. The traffic noise is valued in monetary terms in some countries and it is reflected in estimating the net present value or benefit/cost ratio. On the contrary, the effects of traffic noise are not reflected in the assessment of infrastructure in most cases in Korea. However, as the income level has been increasing, more people have been becoming to put more importance on their living conditions. The purpose of this paper is to estimate the value of traffic noise in the Seoul metropolitan area. The housing price were surveyed to use the quasi-hedonic price technique. By this way, two housing prices at the same floor level in different 128 complexes in the Seoul metropolitan area were surveyed. the actual traffic noise level was also measured. The differences of housing prices and noise levels were analyzed using the various types of regression models. The value is quite different by size of house. The value of large house is higher than that of small house. Since the income level of people in large house is higher than that in small house. it might be said that value of traffic noise for high income people is higher than that for low income people. Moreover, the increase of 1dB(A) noise affects the house price by about 0.3% in Seoul metropolitan area.

  • PDF

Development of an Automated Gangform Climbing System for Apartment Housing Construction - Structural Stability and Tower Crane Lifting Load Analysis - (공동주택 전용 갱폼 인양 자동화 기술의 개발 - 구조적 안정성 및 타워크레인 양중부하 분석 -)

  • Lee, Jeong-Ho;Yang, Sang-Hoon;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.48-59
    • /
    • 2012
  • Gangform, compared to the traditional forms, is a systemized form which can reduce construction duration and cost by the advantage of using it repeatedly. However, transportation and climbing process of the Gangform is highly dependant on the performance of tower crane. Gangform climbing process takes one day out of six to seven days of a structural work cycle. Tower cranes can not be used in other lifting works when they lift the Gangform during the structural work cycle, causing the delay in the construction project. Numerous efforts and researches have been done in domestic and international industry to solve such limitations of Gangform climbing process. Especially, "A Study on the Development of Automatic Gangform Climbing System for Apartment Housing Construction"has suggested a conceptual model which can climb the Gangform system without a tower crane. In this paper, the technical and economical feasibilities of previously proposed Automatic Gangform climbing system are examined by evaluating its structural stability and lifting load reduction effect.

Punching Shear Strength of the Void Transfer Plate (중공 전이 슬래브의 뚫림 전단 강도)

  • Han, Sang-Whan;Park, Jin-Ah;Kim, Jun-Sam;Im, Ju-Hyeuk;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.367-374
    • /
    • 2010
  • The transfer slab system is a structural system that transfers the loads from the upper shear wall structure to the lower columns. This is a costly system due to a very thick slab, and the relatively high cost can be mitigated by introducing voids in the slab. However, this system of flat plate containing voids is vulnerable to brittle failure caused by punching shear in vicinity of slab-column connection. Thus, the punching shear capacity of the void system is very important. However, the current code doesn't provide a clear design provision for the strength of slabs with a void section. In this study, experimental study was conducted to investigate the punching shear strength of the void slab system. The shear strength of the specimens was predicted by current code and previous researches. In result, the punching shear strength of the void system is determined as the least value calculated at critical section located a distance d/2 from the face of the column and the center of the void section using the effective area at critical section.