• Title/Summary/Keyword: Household chemical

Search Result 104, Processing Time 0.022 seconds

Studies on the Solubilizing Capacity of GL-12 and Anionic Surfactant Mixtures (N-Dodecanoyl, N-Methyl Glucamine (GL-12)과 음이온 계면활성제 혼합물의 가용화력에 관한 연구)

  • Ahn, Ho-Jeong;Oh, Seong-Geun;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.881-885
    • /
    • 1997
  • The solubilizing capacity of GL-12, LAS, SLES aqueous solutions and that of mixed surfactant systems were studied using sudan III, which is oil-siluble dye. The solubilizing capacity of mixed surfactant systems was greatly influenced by the mixing ratios. Generally, the solubilizing capacity increased as the composition of GL-12 in the mixed systems increased. From the effect of NaCl on the solubilizing capacity, it was found that the solubilizate is located near the palisade layer in the GL-12/LAS system, and the solubilizate is located inside the micellar core in the GL-12/SLES mixed system. These differences in the location of slubilizate inside micelles result from the difference of molecular structure between LAS and SLES.

  • PDF

VALIDATION AND UTILIZATION OF THE SKINTEXTM SYSTEM

  • Gordon, V.C.;Realica, B.;Tolstrup, K.;Puls, B.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.17 no.1
    • /
    • pp.64-80
    • /
    • 1991
  • The SKINTEX Method is based on a two-compartment physico-chemical model which includes a Biomembrane Barrier in compartment one and an organized macromolecular matrix in compartment two. Test samples absorb onto or permeate through the keratin/collagen Biomembrane Barrier and then can interact with the organized macromolecular matrix. Changes in the integrity of the barrier release a dye indicator: Changes in the matrix can alter its transparency. The sum of these two responses is read spectrophotometrically at 470nm. An early investigation of 950 chemicals and formulations in the SKINTEX System produced results which were 89% concordance to in vivo Draize dermal irritation results obtained with 24-hour occluded application of test samples with-out abrasion and standard scoring. Alkaline materials were analyzed in a specialized SKINTEX AMA Protocol. In this early study, the model did not distinguish nonirritant test materials and formulation with PDII(Primary Dermal Irritation Index)in the range from 0 to 1.2, A High Sensitivity Assay Protocol(HSA)was developed to amplify the changes in both compartments of this model and provide more accurate calibration of these changes. A study of 60 low irritation test samples including cosmetics, household products, chemicals and petro-chemicals distinguished nonirritants with PDII $\leq$ 0.7 for 26 of 30 nonirritants. A second protocol was developed to evaluate the SKINTEX model predictability with respect to human irritation. The Human Response Assay (HRA )has been optimized based on differences in penetration and irritation responses in humans and rabbits. An additional 32 test materials with different mechanisms and degrees of dermal toxicity were evaluated by the HRA. These in vitro results were 86% concordant to human patch test results. In order to further evaluate this model, a Standard Chemical Labelling (SCL) Protocol was developed to optimize this system to predict Draize dermal irritation results after a 4-hour application of the test material. In a study of 52 chemicals including acids, bases, solvents, salts, surfactants and preservatives, the SCL results demonstrated 85% concordance to Draize results for a 4-hour application of test samples on non-abraded rabbit skin. The SKINTEX System, including three specialized protocols, provided results which demonstrated good correlation to the endpoint of dermal irritation in man and rabbits at different application times.

  • PDF

Characterization of Natural Antiseptic System Utilized Propolis and Herb Essential Oil (프로폴리스와 허브에센셜오일을 이용한 천연방부제형의 특성)

  • Jeong, Noh-Hee;Shin, Kwang-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.99-108
    • /
    • 2007
  • The cosmetic and toiletries are necessary health care & household for common life. However we need antiseptic which is effecting harmlessly to the human body. There are propolis, Lavender, Lemon, essential oil in the natural antiseptic materials. This work proceeded design Natural-antiseptic system with three materials as above-mentioned. Natural-antiseptic system was accomplished with propolis (2%), Lavender essential oil (0.3%), Lemon essential oil (0.3%) safety out of Polysorbate 20 (0.5%), Polysorbate 80 (0.5%), PEG (60) hydrogenated castor oil (0.45%), ethanol (5%). The antimicrobial test was experimented on E. coli and Bacillus stearothermophilus. In this antimicrobial test, we found that the effect of antisepsis against E. coli and Bacillus stearothermophilus with propolis 0.3%, Lavender essential oil 0.045% and Lemon essential oil 0.045% was improved. Therefore could expect Natural-antiseptic system product for moisturizing skin toner for face, nourishing essence and wet tissue for clean other things.

An Experimental Study on Fluid Flow and Heat Transfer Around Four Circular Cylinders of In-line (직렬 4원주 주위의 유체유동 및 열전달에 관한 실험적 연구)

  • Choe, Soon-Youl;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.691-697
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heat and air-conditioning system in a household, to chemical processing and power production in large plant. An Experimental study was conducted to investigated the fluid flow and heat transfer around four circular cylinders of in-line in a cross flow of air. The local and average heat transfer characteristics for tube banks are investigated in the present study. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluid. The in-line pitch ratio was in the range $1.5{\leq}L/d{\leq}4.0$, where L is the center distance and d the cylinder diameter, and in the Reynolds number $8,000{\leq}Re{\leq}50,000$. The local and mean Nusselt numbers were estimated. Subsequently, the heat transfer characteristics of four circular cylinders are found to exhibit a strong dependency upon the separation point of their upstream cylinders.

A Study on the Heat Transfer of In-line Heat Exchanger (직렬 열교환기의 열전달에 관한 연구)

  • Choe, S.Y.;Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.48-53
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heating and air-conditioning system in a household, to chemical processing and power production in a large plant. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluids. The heat transfer characteristics of tube banks of in-line arrangements of four circular cylinders in a cross flow are compared for a range of tube locations and Reynolds numbers. The in-line pitch ratio was set up in the range of $1.5\leq L/d\leq4.0$, where L is the center to center distance and d the circular cylinder diameter, and in the Reynolds number of $13,000\leq Re\leq50,000$. The local and mean Nusselt numbers were estimated, and then. Subsequently, the heat transfer characteristics of four circular cylinders were found to exhibit a strong dependency upon the cylinder spacing and separation point of their upstream cylinders.

  • PDF

A Study on Assessment of Biochar Adsorption Applicability by Physical and Chemical Characterization with Livestock Manure (가축분뇨 Biochar의 물리·화학적 특성분석을 통한 흡착제 적용성 평가 연구)

  • Lee, Youngjin;Oh, Minah;Park, Kyoungjoo;Lee, Jai-young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.52-57
    • /
    • 2017
  • As livestock husbandry has broadened from family-scale to enterprise-scale, the number of farming families has decreased in contrast to the increase of the number of livestock, and the amount of livestock manure discharged per household has increased. Livestock manure is difficult to handle and its disposal in the ocean is prohibited. Moreover, facilities that compost and liquefy manure are blamed as sources of soil, ground water, and surface water pollution because the amount of manure generated from husbandry farms causes eutrophication. In this study, livestock manure was utilized as a feedstock of hydrothermal carbonization (HTC) process to produce biochar for use as an environmental medium. The biochar was tested for iodine adsorption capability and its performance was compared with other adsorbent materials.

The Voltage-fed High Frequency Resonant Inverter Using Induction Heated Dry Steam Generator

  • Kim, Chil-Ryong;Lee, Jong-Kurl;Jung, Sang-Hwa;Mun, Sang-Pil;Kim, Sang-Don;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.415-418
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction-based fluid beating appliance using voltage-fed type scries capacitor-compensated load resonant high-frequency IGBT inverter with a phase-shifted PWM and a power factor correction schemes. Its operating characteristics in steady-state are illustrated including unique features and evaluated on the basis of its computer simulation and experimental results of 10kw breadboard appliance for hot water producer and superheated steamer. The promising cost effective inverter-fed boiler appliances for electromagnetic induction-heated type fluid-heating in the pipeline systems are proposed for induction-heated boiler, super heat steamer, high temperature water producer, hot gas producer and metal catalyst heating for exhaust gas cleaning in engine, which are more suitable and acceptable for industrial, chemical, and consumer energy utilization for household and business from a practical point of view.

  • PDF

Gasification and Pyrolysis Technology for the Treatment of Plastics Waste (플라스틱 폐기물의 건류 및 열분해)

  • Ghim, Young Sung
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

Resveratrol: Twenty Years of Growth, Development and Controversy

  • Pezzuto, John M.
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Resveratrol was first isolated in 1939 by Takaoka from Veratrum grandiflorum O. Loes. Following this discovery, sporadic descriptive reports appeared in the literature. However, spurred by our seminal paper published nearly 60 years later, resveratrol became a household word and the subject of extensive investigation. Now, in addition to appearing in over 20,000 research papers, resveratrol has inspired monographs, conferences, symposia, patents, chemical derivatives, etc. In addition, dietary supplements are marketed under various tradenames. Once resveratrol was brought to the limelight, early research tended to focus on pharmacological activities related to the cardiovascular system, inflammation, and cancer but, over the years, the horizon greatly expanded. Around 130 human clinical trials have been (or are being) conducted with varying results. This may be due to factors such as disparate doses (ca. 5 to 5,000 mg/day) and variable experimental settings. Further, molecular targets are numerous and a dominant mechanism is elusive or nonexistent. In this context, the compound is overtly promiscuous. Nonetheless, since the safety profile is pristine, and use as a dietary supplement is prevalent, these features are not viewed as detrimental. Given the ongoing history of resveratrol, it is reasonable to advocate for additional development and further clinical investigation. Topical preparations seem especially promising, as do conditions that can respond to anti-inflammatory action and/or direct exposure, such as colon cancer prevention. Although the ultimate fate of resveratrol remains an open question, thus far, the compound has inspired innovative scientific concepts and enhanced public awareness of preventative health care.

Initial Crack Length Effect for the Interlaminar Mode I Energy Release Rate on a Laminated UHMWPE/CFRP Hybrid Composite (UHMWPE/CFRP 적층하이브리드 복합재의 층간 Mode I 에너지해방율에 미치는 초기균열길이의 영향)

  • Song, Sang Min;Kang, Ji Woong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • A variety of composite materials are applied to industries for the realization of light weight and high strength. Fiber-reinforced composites have different strength and range of application depending on the weaving method. The mechanical performance of CFRP(Carbon Fiber Reinforced Plastic) in many areas has already been demonstrated. Recently, the application of hybridization has been increasing in order to give a compensation for brittleness of CFRP. Target materials are UHMWPE (Ultra High Molecular Weight Polyethylene), which has excellent cutting and chemical resistance, so it is applied not only to industrial safety products but also to places that lining performance is expected for household appliances. In this study, the CFRP and UHMWPE of plain weave, which are highly applicable to curved products, were molded into laminated hybrid composite materials by autoclave method. The mechanical properties and the mode I failure behavior between the layers were evaluated. The energy release rate G has decreased as the initial crack length ratio increased.