• Title/Summary/Keyword: Hourly monitoring

Search Result 102, Processing Time 0.026 seconds

Inspection on the Influence of Asian Dust on the Distribution of Atmospheric Mercury Observed for a Long Time (장기간 관측을 통한 황사 현상이 수은의 분포에 미치는 영향 고찰)

  • Lee, Jeong-Soon;Kim, Min-Young;Kim, Ki-Hyun;Hong, S.M.;Son, Z.H.;Lee, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.169-182
    • /
    • 2007
  • To evaluate the possibly potent role of Asian Dust (AD) on the long range transport of Hg, statistical analyses were carried out using the hourly concentration data of gaseous elemental mercury (Hg) along with relevant environmental parameters. For the purpose of this study, Hg data were collected from Yang-Jae monitoring station in Seoul, Korea during Sept. 1997 to June 2002. During the study period, Hg concentrations in non-AD period ranged from $0.03\;to\;32.70\;ng\;m^{-3}$ with a mean $5.27{\pm}3.06\;ng\;m^{-3}$, while those in AD period from $1.79\;to\;32.60\;ng\;m^{-3}$ with a mean $5.20{\pm}3.06\;ng\;m^{-3}$. The air quality during AD were typically deteriorated by enhanced PM10 mass concentration (by $2{\sim}5$ times) compared to non-AD period, however comparison of the Hg concentration data indicates that they are not critically distinguished between events of AD and non-AD, except for the high minimum level of Hg during AD. The results of correlation and factor analysis also indicated somewhat complex patterns; in the case of AD events, Hg and $SO_{2}$ were assorted concurrently into a same factor. Evidence collected from this study thus suggests that long-range transport of Hg, if occurring, is unlikely to raise statistically Hg concentration levels such as seen during AD event. However, in nighttime of winter season, Hg concentrations are higher during AD (along with PM10 levels) than non-AD period. Although such observations suggest the effect of long range transport on the enhancement of Hg concentrations, more deliberate analysis may be required to track down the effect of such mechanism in relation with various factors including the air mass transport route.

Analysis of Operation Data Monitoring for LPG-Hydrogen Multi-Fueling Station (LPG-수소복합충전소 운영데이터 모니터링 분석)

  • Park, Songhyun;Kim, Donghwan;Ku, Yeonjin;Kim, Piljong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • In response to the recent increase in demand for hydrogen stations, the Ministry of Trade and Industry has enacted and promulgated special notifications to enable the installation of hydrogen stations in the form of the combined complex in existing automotive fuel supply facilities such as LPG, CNG, and gas stations. Hydrogen multi energy filling stations haven't been operated yet in Korea till the establishment of special standards, so it is necessary create special standards by considering all Korean environmental characteristics such as four seasons and daily crossings. In this study, we collected and analyzed the charging data of Ulsan LPG-Hydrogen Multi Fueling Station installed for the first time in Korea. The data are hourly temperature and pressure data from compressors, storage vessels and dispensers. We used the data collected for a year, including the highest temperature and the lowest temperature in Ulsan to compare seasonal characteristics. As a result, it was found that the change of the outside temperature affects the initial temperature of the vehicle's container of the hydrogen car, which finally affects the charging time and the charging speed of the vehicle. There was no effect on vehicle containers because the limit temperature suggested by the Korean Hydrogen Station Standard(KGS FP217) and the US Filling Protocol(SAE J2601) was not exceeded.

Estimation on the Contribution of VOCs and Nitric Oxides in Creating Photochemical Ozone (휘발성유기화합물과 질소산화물의 오존생성 기여도 평가에 관한 연구)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • The fifty six components of volatile organic compounds(VOCs) were continuously measured by the hour to see the distributions their of its concentration and the ozone creating contribution of nitric oxides and VOCs in Gamjeon Odor and VOCs Monitoring Network from April to September, 2008. Aromatics occupied 51.3% of VOCs and paraffins, alkanes and olefins came in order. The monthly concentration of VOCs in Gamjeon was high in July and low in September. As for hourly concentration of ozone and nitric oxides, ozone started to increase since 10am having the highest in the daytime, and nitric oxides had the different trend from that of ozone, showing the lowest in the daytime. The photochemical ozone creating potentials(POCPs) of toluene, propane, m/p-xylene, ethylbenzene, and 1,2,4-trimethylbenzene were 30.6%, 10.2%, 9.4%, 7.4% and 5.2% respectively. These five components occupied 62.8% of total POCPs, which means they contributed to the ozone creation mainly. Related with the ozone creating contribution, the ratio of VOCs to NOx was generally under 6 occupied 72.0%, which came under the area coexisting the limit of VOCs. Therefore it is thought that the management of emission source of VOCs is very important for the reduction of ozone.

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.

The Comparison of the Solar Radiation and the Mean Radiant Temperature (MRT) under the Shade of Landscaping Trees in Summertime (하절기 조경용 녹음수 수관 하부의 일사와 평균복사온도 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.22-30
    • /
    • 2014
  • The purpose of this study was to compare the Solar Radiation(SR) and the Mean Radiant Temperature(MRT) under the shades of the three landscaping trees in clear summer daytimes. The trees were Lagerstroemia indica, Quercus palustris and Ulmus parvifolia. The solar radiation, the globe temperature and the air temperature were recorded every minute from the $1^{st}$ of April to the $30^{th}$ of September 2013 at a height of 1.1m above on the four monitoring stations, with four same measuring system consisting of a solar radiation sensor, two resistance temperature detectors(Pt-100), a black brass globe (${\phi}50mm$) and data acquisition systems. At the same time, the sky view photos were taken automatically hourly by three scouting cameras(lens angle: $60^{\circ}$) fixed at each monitoring station. Based on the 258 daily sky view photos and 6,640 records of middays(10 A.M.~2 P.M.) from the $1^{st}$ of June to the $30^{th}$ of August, the time serial differences of SR and MRT under the trees were analysed and compared with those of open sky, The major findings were as follows; 1. The average ratio of sky views screened by the canopies of Quercus palustris, Lagerstroemia indica and Ulmus parvifolia were 99%, 98% and 97%, and the SR were $106W/m^2$, $163W/m^2$ and $202W/m^2$ respectively, while the SR of open sky was $823W/m^2$. Which shows the canopies blocked at least 70% of natural SR. 2. The average MRT under the canopies of Quercus palustris, Lagerstroemia indica and Ulmus parvifolia were $30.34^{\circ}C$, $33.34^{\circ}C$ and $34.77^{\circ}C$ respectively, while that of open sky was $46.0^{\circ}C$. Therefore, it can be said that the tree canopies can reduce the MRT around $10{\sim}16^{\circ}C$. 3. The regression test showed significant linear relationship between the SR and MRT. In summary, the performances of the landscaping shade trees were very good at screening the SR and reducing the MRT at the outdoor of summer middays. Therefore, it can be apparently said that the more shade trees or forest at the outdoor, the more effective in conditioning the outdoor space reducing the MRT and the useless SR for human activities in summertime.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

Effect of Dietary Supplementation of Garlic and May Flower Powder on CO2 and CH4 Emission by Hanwoo Cow (산사 및 마늘 분말이 한우암소의 이산화탄소 및 메탄 발생량에 미치는 영향)

  • Kim, Du Ri;Ha, Jae Jung;Song, Young Han
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.363-368
    • /
    • 2012
  • This study was conducted to investigate the effects of dietary garlic and may flower powder on $CO_2$ and $CH_4$ emission by Hanwoo cows fed TMR (Total Mixed Ration) based diet. Animals were housed in a hood-type respiration chamber and the environmental temperature was maintained at $20^{\circ}C$. Gases were measured for 24 hours using the multi-detector instrument gas monitoring system (Mamos-300, Australia). The treatments composed of groups with no intake of garlic and may flower powder (Control), with intake of garlic at 0.5% of DM (T1), with intake of garlic at 1% of DM (T2), with intake of may flower at 0.5% of DM (T3), with intake of may flower at 1% of DM (T4), with intake of garlic and may flower at 0.5% of DM (T5) and with intake of garlic and may flower at 1% of DM (T6). The results indicated that $CO_2$ emission in T3 was 53% lower than that of control (p<0.05), and $CH_4$ emissions was 57% lower than control (p<0.05). Also, the hourly pattern of $CO_2$ and $CH_4$ emissions in T3 showed the least difference with all treatments. Gas emissions pattern peaked after 1 hour of feeding and this gap was wider in the afternoon than in the morning hours.

Pollution Characteristics of PM2.5 Observed during Winter and Summer in Baengryeongdo and Seoul (겨울 및 여름철 백령도와 서울에서 측정한 PM2.5 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Park, Jong Sung;Park, Seung Myeong;Song, In Ho;Oh, Jun;Shin, Hye Jung;Lee, Min Do;Lim, Hyung Bae;Kim, Hyun Woong;Choi, Jin Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.38-55
    • /
    • 2018
  • Hourly measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), and water-soluble ionic species were made at the air quality intensive monitoring stations in Baengryeongdo (BR) and Seoul (SL) during the winter (December 01~31, 2013) and summer (July 10~23, 2014) periods, to investigate the increase of $PM_{2.5}$ and secondary ionic species and the reasons leading to their increase during the two seasons. During winter, $PM_{2.5}$ and its major chemical species concentrations were higher at SL than at BR. Contribution of organic mass to $PM_{2.5}$ was approximately 1.7 times higher at BR than at SL, but the $NO_3{^-}$ contribution was two times higher at SL. Total concentration of secondary ionic species ($SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$) at BR and SL sites accounted for 29.1 and 40.1% of $PM_{2.5}$, respectively. However, during summer, no significant difference in chemical composition of $PM_{2.5}$ was found between the two sites with the exception of $SO{_4}^{2-}$. Total concentration of the secondary ionic species constituted on average 43.9% of $PM_{2.5}$ at BR and 53.0% at SL. A noticeable difference in chemical composition between the two sites during summer was attributed to $SO{_4}^{2-}$, with approximately twofold concentration and 10% higher contribution in SL. Low wind speed and high relative humidity were important factors in secondary formation of water-soluble ionic species during winter at SL, resulting in $PM_{2.5}$ increase. While the secondary formation during summer was attributed to strong photochemical processes in daytime and high relative humidity in nighttime hours. The increase of $PM_{2.5}$ and its secondary ionic species during the winter haze pollution period at SL was mainly caused either by long-range transport (LTP) from the eastern Chinese regions, or by local pollution. However, the increased $SO{_4}^{2-}$ and $NO_3{^-}$ during summer at SL were mainly caused by LTP, photochemical processes in daytime hours, and heterogeneous processes in nighttime hours.

Effects of Storage Temperature and Grain Moisture Content on the Contaminaton of Fusarium and Fusariotoxin in Hulled Barley Grains (겉보리의 저장온도와 수분함량이 붉은곰팡이병균과 곰팡이독소 오염에 미치는 영향)

  • Ham, Hyeonheui;Lee, Kyung Ah;Lee, Theresa;Han, Sanghyun;Hong, Sung Kee;Lee, Soohyung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • Fusarium graminearum is a mycotoxigenic plant pathogen, which could remain in harvested barley grains and produces mycotoxins at preferable conditions during storage. To elucidate the factors affecting contamination of Fusarium and Fusariotoxin in hulled barley during storage, three hulled barley grain samples were collected from Jeolla province. Moisture content of each sample was adjusted to 14% and 20%, respectively, then stored in two warehouses where temperature was controlled differently: one controlled below $12^{\circ}C$, and the other with no control. While monitoring temperature and relative humidity of warehouses hourly, grain moisture content, Fusarium occurrence, and mycotoxin level was analyzed at 1, 3, 6, and 12 month after storage. The average monthly temperature and relative humidity ranged $3{\sim}29^{\circ}C$, and 58~70% in warehouse without temperature control, whereas $3{\sim}13^{\circ}C$ and 62~74% in warehouse controlled below $12^{\circ}C$. Grain moisture content of the samples decreased in both warehouses except 14% samples which increased in the warehouse with temperature control. Fusarium frequency of the contaminated grains decreased continuously in the warehouse without temperature control. But in the warehouse below $12^{\circ}C$, Fusarium decreasing rate was slower because of high grain moisture content. In most samples, nivalenol was detected more in the warehouse without temperature control after 12 month but there was little difference after 1, 3, and 6 month. Therefore, it will be efficient to store hulled barley in the warehouse controlled below $12^{\circ}C$ to reduce Fusarium contamination when the barley is not dried properly. In addition, when storage period exceeds 12 month, it is recommended to store hulled barley in a warehouse controlled below $12^{\circ}C$ to reduce nivalenol contamination.

Effects of Ambient Particulate Matter($PM_{10}$) on Peak Expiratory Flow and Respiratory Symptoms in Subjects with Bronchial Asthma During Yellow Sand Period (황사기간 중 천식 환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Ssun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan;Ju, Young-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.570-578
    • /
    • 2003
  • Background : Ambient particles during Asian dust events are usually sized less than $10{\mu}m$, known to be associated with the adverse effects on the general populations. But, there has been no considerable evidence linking these particles to the adverse effects on airways. The objectives of this study was to investigate the possible adverse effects of Asian dust events on respiratory function and symptoms in subjects with bronchial asthma. Patients and Methods : From march to June 2002, Asthmatic patients who were diagnosed with bronchial challenge test or bronchodilator response were enrolled. We divided them into three groups; mild, moderate, and severe, according to the severity. Subjects with other organ insufficiency such as heart, kidney, liver, and malignancy were excluded. All patients completed twice daily diaries and recorded peak flow rate, respiratory symptom, and daily activity. Daily and hourly mean pollutant levels of particulate matter < $10{\mu}m$ in diameter($PM_{10}$), nitrogen dioxide($NO_2$), sulphur dioxide($SO_2$), ozone($O_3$) and carbon monoxide(CO) were measured at the 10 different monitoring sites. Results : Dust events occured 14 times during the study period. Daily averages of 4 air pollutant were measured with an increased level of $PM_{10}$, decreased level of $NO_2$ and $SO_2$, and no change in CO during dust days compared to those during control days. An increase in $PM_{10}$ concentration was associated with an increase of subjects with PEF variability of >20% (p<0.05), night time symptom(p<0.05), and a decrease in mean PEF (p<0.05), which were calculated by the longitudinal data analysis. Otherwise, there was no association between $PM_{10}$ level and bronchodialtor inhaler, and daytime respiratory symptoms. Conclusion : This study shows evidence that ambient air pollution, especially $PM_{10}$, during Asian dust events, could be one of the many aggravating factors at least in patients with airway diseases. This data can be used as a primary source to set up a new policy on air environmental control and to evaluate the safety of air pollution index. We also expect that this research will help identify precise components of dust, which are more linked to the adverse effects.