• Title/Summary/Keyword: Hounsfield units

Search Result 61, Processing Time 0.022 seconds

Pattern of buccal and palatal bone density in the maxillary premolar region: an anatomical basis of anterior-middle superior alveolar (AMSA) anesthetic technique

  • Ahad, Abdul;Haque, Ekramul;Naaz, Sabiha;Bey, Afshan;Rahman, Sajjad Abdur
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.6
    • /
    • pp.387-395
    • /
    • 2020
  • Background: The anterior-middle superior alveolar (AMSA) anesthetic technique has been reported to be a less traumatic alternative to several conventional nerve blocks and local infiltration for anesthesia of the maxillary teeth, their periodontium, and the palate. However, its anatomic basis remains controversial. The present study aimed to determine if the pattern of cortical and cancellous bone density in the maxillary premolar region can provide a rationale for the success of the AMSA anesthetic technique. Method: Cone-beam computed tomography scans of 66 maxillary quadrants from 34 patients (16 men and 18 women) were evaluated using a volumetric imaging software for cortical and cancellous bone densities in three interdental regions between the canine and first molar. Bone density was measured in Hounsfield units (HU) separately for the buccal cortical, palatal cortical, buccal cancellous, and palatal cancellous bones. Mean HU values were compared using the Mann-Whitney U test and one-way ANOVA with post-hoc analysis. Results: Cancellous bone density was significantly lower (P ≤ 0.001) in the palatal half than in the buccal half across all three interdental regions. However, there was no significant difference (P = 0.106) between the buccal and palatal cortical bone densities at the site of AMSA injection. No significant difference was observed between the two genders for any of the evaluated parameters. Conclusions: The palatal half of the cancellous bone had a significantly lower density than the buccal half, which could be a reason for the effective diffusion of the anesthetic solution following a palatal injection during the AMSA anesthetic technique.

Computed tomographic features of the temporomandibular joint in 10 Jeju horses

  • Lee, Seyoung;Lee, Eun-Bee;Park, Kyung-Won;Jeong, Hyohoon;Shin, Kwang-Yun;Kweon, Young-Park;Seo, Jong-pil
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.44.1-44.10
    • /
    • 2022
  • Background: The equine temporomandibular joint (TMJ) has a complex anatomical structure that makes diagnosis of TMJ disorders difficult. Computed tomography (CT) is now available in equine medicine; hence, TMJ evaluation has become more convenient. Objectives: The objectives of this study were to describe the CT features of the TMJ in Jeju horses and to compare these features with those of Thoroughbreds. Methods: In this report, the TMJs of 10 Jeju horses (mean age: 4.5 ± 1.9 yr; mean body weight: 282.6 ± 40.3 kg) and 6 Thoroughbreds (mean age: 7.3 ± 1.6 yr; mean body weight: 479.7 ± 44.0 kg) were examined using CT. After CT scanning, the Hounsfield units (HU) and height to width ratio (H:W) of the mandibular condyle were measured. Results: The mean H:W in Jeju horses was significantly lower than that in Thoroughbreds. The mean HU in Jeju horses was lower than that in Thoroughbreds; however, the difference was not significant. The most frequent CT finding was an irregular medial margin of the mandibular condyle in both breeds. Conclusions: In this study, the shape of the mandibular condyle in Jeju horses was flatter than that in Thoroughbreds. This report could be useful in evaluating the TMJ in Jeju horses. Moreover, CT could be a pragmatic choice for the examination of the TMJ in horses.

Optimal Attenuation Threshold for Quantifying CT Pulmonary Vascular Volume Ratio

  • Hyun Woo Goo;Sang Hyub Park
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.756-763
    • /
    • 2020
  • Objective: To evaluate the effects of attenuation threshold on CT pulmonary vascular volume ratios in children and young adults with congenital heart disease, and to suggest an optimal attenuation threshold. Materials and Methods: CT percentages of right pulmonary vascular volume were compared and correlated with percentages calculated from nuclear medicine right lung perfusion in 52 patients with congenital heart disease. The selected patients had undergone electrocardiography-synchronized cardiothoracic CT and lung perfusion scintigraphy within a 1-year interval, but not interim surgical or transcatheter intervention. The percentages of CT right pulmonary vascular volumes were calculated with fixed (80-600 Hounsfield units [HU]) and adaptive thresholds (average pulmonary artery enhancement [PAavg] divided by 2.50, 2.00, 1.75, 1.63, 1.50, and 1.25). The optimal threshold exhibited the smallest mean difference, the lowest p-value in statistically significant paired comparisons, and the highest Pearson correlation coefficient. Results: The PAavg value was 529.5 ± 164.8 HU (range, 250.1-956.6 HU). Results showed that fixed thresholds in the range of 320-400 HU, and adaptive thresholds of PAavg/1.75-1.50 were optimal for quantifying CT pulmonary vascular volume ratios. The optimal thresholds demonstrated a small mean difference of ≤ 5%, no significant difference (> 0.2 for fixed thresholds, and > 0.5 for adaptive thresholds), and a high correlation coefficient (0.93 for fixed thresholds, and 0.91 for adaptive thresholds). Conclusion: The optimal fixed and adaptive thresholds for quantifying CT pulmonary vascular volume ratios appeared equally useful. However, when considering a wide range of PAavg, application of optimal adaptive thresholds may be more suitable than fixed thresholds in actual clinical practice.

Semi-Quantitative Analysis for Determining the Optimal Threshold Value on CT to Measure the Solid Portion of Pulmonary Subsolid Nodules (폐의 아고형결절에서 침습적 병소를 검출하기 위한 반-정량 분석을 통한 최적의 CT 임계 값 결정)

  • Sunyong Lee;Da Hyun Lee;Jae Ho Lee;Sungsoo Lee;Kyunghwa Han;Chul Hwan Park;Tae Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.3
    • /
    • pp.670-681
    • /
    • 2021
  • Purpose This study aimed to investigate the optimal threshold value in Hounsfield units (HU) on CT to detect the solid components of pulmonary subsolid nodules using pathologic invasive foci as reference. Materials and Methods Thin-section non-enhanced chest CT scans of 25 patients with pathologically confirmed minimally invasive adenocarcinoma were retrospectively reviewed. On CT images, the solid portion was defined as the area with higher attenuation than various HU thresholds ranging from -600 to -100 HU in 50-HU intervals. The solid portion was measured as the largest diameter on axial images and as the maximum diameter on multiplanar reconstruction images. A linear mixed model was used to evaluate bias in each threshold by using the pathological size of invasive foci as reference. Results At a threshold of -400 HU, the biases were lowest between the largest/maximum diameter of the solid portion of subsolid nodule and the size of invasive foci of the pathological specimen, with 0.388 and -0.0176, respectively. They showed insignificant difference (p = 0.2682, p = 0.963, respectively) at a threshold of -400 HU. Conclusion For quantitative analysis, -400 HU may be the optimal threshold to define the solid portion of subsolid nodules as a surrogate marker of invasive foci.

Comparison of True and Virtual Non-Contrast Images of Liver Obtained with Single-Source Twin Beam and Dual-Source Dual-Energy CT (간의 단일선원 Twin Beam과 이중선원 이중에너지 전산화단층촬영의 비조영증강 영상과 가상 비조영증강 영상의 비교 연구)

  • Jeong Sub Lee;Guk Myung Choi;Bong Soo Kim;Su Yeon Ko;Kyung Ryeol Lee;Jeong Jae Kim;Doo Ri Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.170-184
    • /
    • 2023
  • Purpose To assess the magnitude of differences between attenuation values of the true non-contrast image (TNC) and virtual non-contrast image (VNC) derived from twin-beam dual-energy CT (tbDECT) and dual-source DECT (dsDECT). Materials and Methods This retrospective study included 62 patients who underwent liver dynamic DECT with tbDECT (n = 32) or dsDECT (n = 30). Arterial VNC (AVNC), portal VNC (PVNC), and delayed VNC (DVNC) were reconstructed using multiphasic DECT. Attenuation values of multiple intra-abdominal organs (n = 11) on TNCs were subsequently compared to those on multiphasic VNCs. Further, we investigated the percentage of cases with an absolute difference between TNC and VNC of ≤ 10 Hounsfield units (HU). Results For the mean attenuation values of TNC and VNC, 33 items for each DECT were compared according to the multiphasic VNCs and organs. More than half of the comparison items for each DECT showed significant differences (tbDECT 17/33; dsDECT 19/33; Bonferroni correction p < 0.0167). The percentage of cases with an absolute difference ≤ 10 HU was 56.7%, 69.2%, and 78.6% in AVNC, PVNC, and DVNC in tbDECT, respectively, and 70.5%, 78%, and 78% in dsDECT, respectively. Conclusion VNCs derived from the two DECTs were insufficient to replace TNCs because of the considerable difference in attenuation values.

Enhancement of the Deformable Image Registration Accuracy Using Image Modification of MV CBCT (Megavoltage Cone-beam CT 영상의 변환을 이용한 변환 영상 정합의 정확도 향상)

  • Kim, Min-Joo;Chang, Ji-Na;Park, So-Hyun;Kim, Tae-Ho;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • To perform the Adaptive Radiation Therapy (ART), a high degree of deformable registration accuracy is essential. The purpose of this study is to identify whether the change of MV CBCT intensity can improve registration accuracy using predefined modification level and filtering process. To obtain modification level, the cheese phantom images was acquired from both kilovoltage CT (kV CT), megavoltage cone-beam CT (MV CBCT). From the cheese phantom images, the modification level of MV CBCT was defined from the relationship between Hounsfield Units (HUs) of kV CT and MV CBCT images. 'Gaussian smoothing filter' was added to reduce the noise of the MV CBCT images. The intensity of MV CBCT image was changed to the intensity of the kV CT image to make the two images have the same intensity range as if they were obtained from the same modality. The demon deformable registration which was efficient and easy to perform the deformable registration was applied. The deformable lung phantom which was intentionally created in the laboratory to imitate the changes of the breathing period was acquired from kV CT and MV CBCT. And then the deformable lung phantom images were applied to the proposed method. As a result of deformable image registration, the similarity of the correlation coefficient was used for a quantitative evaluation of the result was increased by 6.07% in the cheese phantom, and 18% in the deformable lung phantom. For the additional evaluation of the registration of the deformable lung phantom, the centric coordinates of the mark which was inserted into the inner part of the phantom were measured to calculate the vector difference. The vector differences from the result were 2.23, 1.39 mm with/without modification of intensity of MV CBCT images, respectively. In summary, our method has quantitatively improved the accuracy of deformable registration and could be a useful solution to improve the image registration accuracy. A further study was also suggested in this paper.

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.

Quantitative Differences between X-Ray CT-Based and $^{137}Cs$-Based Attenuation Correction in Philips Gemini PET/CT (GEMINI PET/CT의 X-ray CT, $^{137}Cs$ 기반 511 keV 광자 감쇠계수의 정량적 차이)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Park, Eun-Kyung;Kim, Jong-Hyo;Kim, Jae-Il;Lee, Hong-Jae;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • Purpose: There are differences between Standard Uptake Value (SUV) of CT attenuation corrected PET and that of $^{137}Cs$. Since various causes lead to difference of SUV, it is important to know what is the cause of these difference. Since only the X-ray CT and $^{137}Cs$ transmission data are used for the attenuation correction, in Philips GEMINI PET/CT scanner, proper transformation of these data into usable attenuation coefficients for 511 keV photon has to be ascertained. The aim of this study was to evaluate the accuracy in the CT measurement and compare the CT and $^{137}Cs$-based attenuation correction in this scanner. Methods: For all the experiments, CT was set to 40 keV (120 kVp) and 50 mAs. To evaluate the accuracy of the CT measurement, CT performance phantom was scanned and Hounsfield units (HU) for those regions were compared to the true values. For the comparison of CT and $^{137}Cs$-based attenuation corrections, transmission scans of the elliptical lung-spine-body phantom and electron density CT phantom composed of various components, such as water, bone, brain and adipose, were performed using CT and $^{137}Cs$. Transformed attenuation coefficients from these data were compared to each other and true 511 keV attenuation coefficient acquired using $^{68}Ge$ and ECAT EXACT 47 scanner. In addition, CT and $^{137}Cs$-derived attenuation coefficients and SUV values for $^{18}F$-FDG measured from the regions with normal and pathological uptake in patients' data were also compared. Results: HU of all the regions in CT performance phantom measured using GEMINI PET/CT were equivalent to the known true values. CT based attenuation coefficients were lower than those of $^{68}Ge$ about 10% in bony region of NEMA ECT phantom. Attenuation coefficients derived from $^{137}Cs$ data was slightly higher than those from CT data also in the images of electron density CT phantom and patients' body with electron density. However, the SUV values in attenuation corrected images using $^{137}Cs$ were lower than images corrected using CT. Percent difference between SUV values was about 15%. Conclusion: Although the HU measured using this scanner was accurate, accuracy in the conversion from CT data into the 511 keV attenuation coefficients was limited in the bony region. Discrepancy in the transformed attenuation coefficients and SUV values between CT and $^{137}Cs$-based data shown in this study suggests that further optimization of various parameters in data acquisition and processing would be necessary for this scanner.

A Method to Obtain the CT Attenuation Coefficient and Image Noise of Various Convolution Kernels in the Computed Tomography (Convolution Kernel의 종류에 따른 CT 감약계수 및 노이즈 측정에 관한 연구)

  • Kweon, Dae-Cheol;Yoo, Beong-Gyu;Lee, Jong-Seok;Jang, Keun-Jo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • Our objective was to evaluate the CT attenuation coefficient and noise of spatial domain filtering as an alternative to additional image reconstruction using different kernels in abdominal CT. Derived from thin collimated source images was generated using abdomen B10 (very smooth), B20 (smooth), B30 (medium smooth), B40 (medium), B50 (medium sharp), B60 (sharp), B70 (very sharp) and B80 (ultra sharp) kernels. Quantitative CT coefficient and noise measurements provided comparable HU (hounsfield) units in this respect. CT attenuation coefficient (mean HU) values in the abdominal were 60.4$\sim$62.2 HU and noise (7.6$\sim$63.8 HU) in the liver parenchyma. In the stomach a mean (CT attenuation coefficient) of -2.2$\sim$0.8 HU and noise (10.1$\sim$82.4 HU) was measured. Image reconstructed with a convolution kernel led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image medications of image sharpness and noise eliminate the need for reconstruction using different kernels in the future. CT images increase the diagnostic accuracy may be controlled by adjusting CT various kernels, which should be adjusted to take into account the kernels of the CT undergoing the examination.

  • PDF

New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Namkug Kim;Jaeyoun Yi;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh;Sang-Do Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1719-1729
    • /
    • 2021
  • Objective: Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods: A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than -856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results: The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = -0.659-0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion: The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.