Image Processing Technique has been used as an efficient method to collect traffic information on the road such as vehicle counts, speed, queues, congestion and incidents. Most of the current methods which have been used to detect vehicles by the image processing are based on point processing, dealing with the local gray level of each pixel in the small window. However, these methods have some drawbacks. Firstly, detection is restricted by image quality. Secondly, they can not deal with occlusion and perspective projection problems, In this research, a new method which possibly deals with occlusion and perspective problems will be proposed. It extracts spatial information such as the position, the relationship of vehicles in 3-dimensional space, as well as vehicle detection in the image. The main algorithm used in this research is based on an extension of the Hough Transform. The Hough Transform which is proposed to estimates parameters of vertices and directed edges analytically on the Hough Space, is a valuable method for the 3-dimensional analysis of static scenes, motion detection and the estimation of viewing parameters.
This paper proposes a method to improve the performance of ship identification through lofargram analysis of ship noise by applying the Hough Transform to a Convolutional Neural Network (CNN) model. When processing the signals received by a passive sonar, the time-frequency domain representation known as lofargram is generated. The machinery noise radiated by ships appears as tonal signals on the lofargram, and the class of the ship can be specified by analyzing it. However, analyzing lofargram is a specialized and time-consuming task performed by well-trained analysts. Additionally, the analysis for target identification is very challenging because the lofargram also displays various background noises due to the characteristics of the underwater environment. To address this issue, the Hough Transform is applied to the lofargram to add lines, thereby emphasizing the tonal signals. As a result of identification using CNN models on both the original lofargrams and the lofargrams with Hough transform, it is shown that the application of the Hough transform improves lofargram identification performance, as indicated by increased accuracy and macro F1 scores for three different CNN models.
International Journal of Control, Automation, and Systems
/
v.1
no.1
/
pp.119-126
/
2003
The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.
In this paper, it is discussed that the detection and tracking performance of the piecewise linear path underwater target is improved using clutter reduction algorithm in heavy clutter density environment. Through clutter reduction algorithm using Hough Transform, measurements which represent clutter features are removed and the performance of target tracking on the remaining measurements is demonstrated applying CMKF-L(Converted Measurement Kalman Filter with Linearization) as tracking filter. Algorithm performance test is conducted using simulation data and real sea-trial data and by applying the proposed algorithm in heavy clutter density environment, it is confirmed that the target is tracked consistently and stably with clutter rejected measurements.
This paper presents a research on the fast and accurate method of line detection in the image of a wireless mobile robot (WMR). For the improvement of the processing time to detect lines, the characteristics of the transmitted image from the WMR was analyzed, and the efficient preprocessing method among the existing preprocessing methods was selected. And for the improvement of the accuracy to detect lines, the selection method of local maximum value at the Hough array (HA) which has the result of Hough transform was improved by designing a mask and applying it to HA. The experiment was performed with acquired images from the WMR, and the proposed method outperformed the existing methods in terms of processing time and line detection.
According to photography, lines are important elements that make composition and mood of photo. In this paper, we proposed a measure for compositional dissimilarity between photos using lines which are basic elements of photography. To identify patterns of lines which classify composition of photos, we investigated both features of compositionally same photos and compositionally different photos. Then we developed effective measure for compositional dissimilarity between photos by applying the investigated features to the measure, and we implemented an image searching system which retrieves photo compositionally similar to given query to evaluate performance of proposed method. The searching system showed the precision of about 85% maximally for the highly matched 10 results and was capable of reliably retrieving compositionally similar to given query even if some objects were included in photos.
In this study, we constructed a preview-sensing visual sensor system for weld seam tracking in GMA welding. The visual sensor consists of a CCD camera, a diode laser system with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and/or arc light. To obtain weld joint position and edge points accurately from the captured image, we compared Hough transform method with central difference method. As a result, we present Hough transform method can more accurately extract the points and it can be applied to real time weld seam tracking. Image processing is carried out to extract straight lines that express laser stripe. After extracting the lines, weld joint position and edge points is determined by intersecting points of the lines. Although a spatter trace is in the image, it is possible to recognize the position of weld joint. Weld seam tracking was precisely implemented with adopting Hough transform method, and it is possible to track the weld seam in the case of offset angle is in the region of $\pm15^{\circ}$.
Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
Journal of Institute of Control, Robotics and Systems
/
v.3
no.5
/
pp.511-519
/
1997
This paper presents the automatic recognition algorithm of the license number in on vehicle image. The proposed algorithm uses the correlation coefficient and Hough transform to detect license plate. The m/n ratio reduction is performed to save time and memory. By the correlation coefficient between the standard pattern and the target pattern, licence plate area is roughly extracted. On the extracted local area, preprocessing and binarization is performed. The Hough transform is applied to find the extract outline of the plate. If the detection fails, a smaller or a larger standard pattern is used to compute the correlation coefficient. Through this process, the license plate of different size can be extracted. Two algorithms to each separate number are proposed. One segments each number with projection-histogram, and the other segments each number with the label. After each character is separated, it is recognized by the neural network. This research overlomes the problems in conventional methods, such as the time requirement or failure in extraction of outlines which are due to the processing of the entire image, and by processing in real time, the practical application is possible.
Proceedings of the Korean Society of Precision Engineering Conference
/
1997.04a
/
pp.719-723
/
1997
The welding automation in ship manufacturing process,especially in the sub-assembly line is considered to be a difficult job because the welding part is too huge, various, unstructured for a welding robot to weld fully automatically. The weld orocess at the sub-assembly line for ship manufacturing is to joint the various stiffener on the base panel. In order to realize automatic robot weld in sub-assembly line, robot have to equip with the sensing system to recognize the position of the parts. In this research,we developed a vision system to detect the position of base panle for sub-assembly line is shipbuilding process. The vision system is composed of one CCD camera attached on the base of robot, 2-500W halogen lamps for active illumination. In the image processing algorithm,the base panel is represented by two set of lines located at its two corner through hough transform. However, the various noise line caused by highlight,scratches and stiffener,roller in conveyor, and so on is contained in the captured image, this nosie can be eliminated by region segmentation and threshold in hough transform domain. The matching process to recognize the position of weld panel is executed by finding patterns in the Hough transformed domain. The sets of experiments performed in the sub-assembly line show the effectiveness of the proposed algorithm.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.383-386
/
2007
허프 변환(Hough transform)은 영상에서 몇 개의 파라미터로 표현되는 기하학적 요소 추출을 위해 널리 사용되고 있는 방법 중 하나이다. 하지만 허프 변환은 영상의 한 픽셀이 허프 공간(Hough space)의 한 방정식에 대응되는 일대다 특성으로 인해 잡음에 민감한 특성을 갖는다. 이러한 잡음 민감성은 검출되는 직선의 개수뿐만이 아니라 검출된 직선의 품질에도 영향을 미칠 수 있다. 즉, 실제 직선에서 벗어난 직선이 검출되거나 하나의 실제 직선에 대해 여러 개의 직선이 검출되는 등의 직선 왜곡이 발생할 수 있다. 이러한 직선 왜곡은 잡음 이외에도 허프 공간의 설정, 특히 각 해상도의 설정에 영향을 받는다. 이 논문에서는 기존의 허프 변환에서 발생하는 이러한 직선 왜곡을 분석하고, 잡음 민감성을 줄이기 위해 제안된 경계선 강도 허프 변환(Edge Strength Hough Transform, ESHT)에서 이러한 왜곡이 적게 발생함을 보인다. 또한 ESHT에서만 발생할 수 있는 왜곡을 분석하고 해결방안을 제시한다. 제시한 방법에 의해 직선의 왜곡이 감소하는 것은 실험 결과를 통해 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.