• Title/Summary/Keyword: Hotelling의 T2 통계량

Search Result 13, Processing Time 0.018 seconds

Detection of the Change in Blogger Sentiment using Multivariate Control Charts (다변량 관리도를 활용한 블로거 정서 변화 탐지)

  • Moon, Jeounghoon;Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.903-913
    • /
    • 2013
  • Social network services generate a considerable amount of social data every day on personal feelings or thoughts. This social data provides changing patterns of information production and consumption but are also a tool that reflects social phenomenon. We analyze negative emotional words from daily blogs to detect the change in blooger sentiment using multivariate control charts. We used the all the blogs produced between 1 January 2008 and 31 December 2009. Hotelling's T-square control chart control chart is commonly used to monitor multivariate quality characteristics; however, it assumes that quality characteristics follow multivariate normal distribution. The performance of a multivariate control chart is affected by this assumption; consequently, we introduce the support vector data description and its extension (K-control chart) suggested by Sun and Tsung (2003) and they are applied to detect the chage in blogger sentiment.

반도체 공정 신호의 이상탐지 및 분류를 위한 자기구상지도 기반 기법에 관한 연구

  • Yun, Jae-Jun;Park, Jeong-Sul;Baek, Jun-Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.36-36
    • /
    • 2011
  • 반도체 공정 신호는 주기 신호와 비주기 신호로 구분된다. 특정 패턴을 가지는 주기 신호는 해당 파라미터(parameter)에 대해서 패턴 매칭을 수행하여 관리하는 연구가 진행되고 있다. 반면 비주기 신호 데이터의 경우에는 패턴 매칭 방법을 수행할 수 없다. 또한 반도체 공정에서 얻을 수 있는 두 개 타입의 데이터는 그 파라미터가 방대하기 때문에 현재 실제 공정에 적용되고 있는 방식인 각각 하나의 파라미터에 대해 관리도(control chart)를 구성해 관리하는 것은 많은 비용과 시간의 낭비를 초래한다. 따라서 두 타입 데이터의 여러 개의 파라미터를 동시에 관측할 수 있고 파라미터간의 내재된 상관관계를 고려할 수 있는 장점을 가진 분석 기법에 대한 연구가 필요하다. 주기 신호의 이상탐지를 위한 기존 연구는 신호를 구간으로 나누어 구간별로 SPC 차트적용 시키는 방법, 각 시점 마다 측정되는 값을 하나의 변수로 고려하여 Hotelling's T square, PCA, PLS 등과 같은 다변량 통계 분석을 적용 시키는 방법들이 제시되어 왔다. 이러한 방법들은 다양한 특성을 가지는 주기신호를 분석하고 이상을 탐지 하는데 많은 한계점을 가진다. 이에 본 논문은 다양한 형태를 가지는 신호의 특성을 반영하여 자기구상지도를 기반으로 신호의 분류와 공정의 이상을 탐지하는 기법을 제안한다. 제안하는 기법은 자기구상지도를 이용하여 복잡한(고차원, 시계열) 신호를 2차원 상의 노드로 맵핑시킴으로써 신호의 특질(feature)을 추출하고 새로 표현된 신호의 특질을 기반으로 Logistic regression을 적용시켜 이상을 탐지 한다. 다양한 이상 상황을 가진 반도체 공정 신호를 사용하여 제안한 이상탐지 성능을 평가하였다.

  • PDF

A Study on Fault Detection of Cycle-based Signals using Wavelet Transform (웨이블릿을 이용한 주기 신호 데이터의 이상 탐지에 관한 연구)

  • Lee, Jae-Hyun;Kim, Ji-Hyun;Hwang, Ji-Bin;Kim, Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • Fault detection of cycle-based signals is typically performed using statistical approaches. Univariate SPC using few representative statistics and multivariate analysis methods such as PCA and PLS are the most popular methods for analyzing cycle-based signals. However, such approaches are limited when dealing with information-rich cycle-based signals. In this paper, process fault defection method based on wavelet analysis is proposed. Using Haar wavelet, coefficients that well reflect the process condition are selected. Next, Hotelling's $T^2$ chart using selected coefficients is constructed for assessment of process condition. To enhance the overall efficiency of fault detection, the following two steps are suggested, i.e. denoising method based on wavelet transform and coefficient selection methods using variance difference. For performance evaluation, various types of abnormal process conditions are simulated and the proposed algorithm is compared with other methodologies.

  • PDF