• Title/Summary/Keyword: Hot-filament CVD

Search Result 37, Processing Time 0.032 seconds

Influence of Pretreatment of Substrate on the Formation of Diamond Thin Film by Hot Filament CVD (열 필라멘트 CVD법에 의한 다이아몬드 박막합성과 기판 사전처리의 영향)

  • Im, Gyeong-Su;Wi, Myeong-Yong;Hwang, Nong-Mun
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.732-742
    • /
    • 1995
  • Effects of the substrate pretreatment on uncleation density of the diamond thin films have been investigated. The film was prepared using the hot-filament CVD reactor with the mixture of methane and hydrogen. The substrate pretreatment was done in three different ways: predeposition of carbon on the substrate, soot on the substrate, and graphite on the substrate. All three cases enhanced the nucleation density of diamond. And the effect was more marked in the first and the second cases than in the third one. In the first case where the substrate was predeposited by the carbon phase, a very smooth and uniform film of diamond could be obtained. Since the bound strength between the substrate and the predeposited carbon phase is relatively weak, separation of the diamond film layer from the substrate was found to be easy.

  • PDF

Effects of Oxygen Addition on the Growth Rate and Crystallinity in Diamond CVD (다이아몬드 CVD에서 산소혼입이 증착속도 및 결정성에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.401-411
    • /
    • 1990
  • Deposition of diamond films on Si(100) from the mixtures of methane and hydrogen were investigated using hot W filament CVD method. The nucleation density could be increased thousandfold by surface treatment with SiC powder. Upon oxygen addition to the mixture, crystal facets became developed more clearly by selectively removing non-diamond carbons, but the film growth rate generally decreased. However, at a very high methane content(e.g. 10%), a small amount of oxygen addition has resulted in an increase in the film deposition rate presumably by promotion of methane decomposition. When the gas pressure was varied, the growth rate exhibited a maxiumum at around 20torr and the film crystallinity steadily improved with the pressure increase. The observed variation of the growth rate by oxygen addition was discussed in terms of its role in the pyrolysis and the subsequent gas phase reactions.

  • PDF

Computer Simulation of Temperature Parameter for Diamond Formation by using Hot- Filament Chemical Vapor Deposition (온도 매개 변수의 컴퓨터 시뮬레이션을 통한 HF-CVD를 이용한 다이아몬드 증착 거동 분석)

  • Song, Chang-Won;Lee, Yong-Hui;Choe, Su-Seok;Hwang, Nong-Mun;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.54-54
    • /
    • 2018
  • To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in the hot filament chemical vapor deposition (HFCVD) system. In this study the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16 and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software, ANSYS-FLUENT. To account for radiative heat-transfer in the HFCVD reactor, the discrete ordinate (DO) model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512 ~ 2802 K, and 1076 ~ 1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with experimental temperatures measured using a 2-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  • PDF

니켈 피복된 고속도강에의 다이아몬드 박막형성에 관한 연구

  • 유형종;최진일;최용
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.240-243
    • /
    • 2004
  • Bias인가된 Hot filament CVD방법을 이용해 Ni을 RF sputtering법으로 고속도강에 피복하여 중간층으로 한후 다이아몬드 박막을 피복할 때 기판온도. Bias인가효과 및 계면층의 특성을 조사하였다. 증착시 Bias인가 할 경우 필라멘트에서 전자방출이 촉진되어 다이아몬드 핵생성과 성장을 촉진하였으며 본 실험에서 최적조건은 증착압력 20~40 torr, Bias인가전압 200V, 기판온도 $700^{\circ}C$로 나타났으며 강에의 다이아몬드 박막 형성시 Ni은 중간층으로써 적합한 원소로 나타났다.

  • PDF

Effect of Bias Voltage in the Hot Filament Diamond CVD Process (열 필라멘트 다이아몬드 화학증착법에서 바이어스 전압의 효과)

  • Im, Gyeong-Su;Wi, Myeong-Yong;Hwang, Nong-Mun
    • Korean Journal of Materials Research
    • /
    • v.5 no.4
    • /
    • pp.451-457
    • /
    • 1995
  • 열 필라멘트 화학증착(CVD) 다이아몬드 제조에서 bias인가에 따른 다이아몬드 생성양상의 변화를 조사하였다. 기존의 bias실험에서는 기판과 필라멘트 사이에 bias를 인가시켰으나, 본 연구에서는 이 방법 외에 필라멘트 상 하에 텅스텐 망을 설치하여 bias를 인가시켰다. 실험결과 bias 전압을 인가하는 방법에 관계없이 필라멘트의 전자방출을 촉진시키는 방향으로 bias가 인가될 겨우 다이아몬드의 생성밀도 및 증착속도에 유리하게 작용하였다. 본 결과로부터 다이아몬드 증착시 필라멘트에서 방출되는 전자가 중요한 영향을 미치고 있음을 확인하였다. 전자의 기판표면과의 충돌에 의하여 다이아몬드의 생성에 미치는 효과는 적어도 본 실험에서는 중요하지 않음을 알 수 있었다.

  • PDF

A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications (태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구)

  • 유진수;임동건;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF

Growth of Carbon Nanotubes at Low temperature by HF-PECVD (Hot-filament 화학기상증착법을 이용한 탄소나노튜브의 저온 성장)

  • Chang, Yoon-Jung;Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.151-152
    • /
    • 2007
  • 탄소나노튜브(CNTs)는 우수한 물리적, 화학적, 기계적 특성으로 다양한 분야에서 연구가 진행 되고있다. 특히, field emission displays (FEDs)로의 응용을 위해서는 기본적으로 sodalime glass 위에 직접 CNTs를 성장시켜야 하며, 소자 응용을 위해 기판인 sodalime glass를 왜곡시키는 온도보다 낮은 온도에서 CNT의 수직 성장이 이루어져야 한다. 본 연구에서는 Hot-filament plasma enhanced chemical vapor deposition (HF-PECVD)를 이용하여 합성온도를 400, 450, 500, $550^{\circ}C$로 변화시켰으며 촉매 층인 Ni의 두께를 5~40 nm까지 조절하여 탄소나노튜브를 합성하였다. 저온에서 합성된 탄소나노튜브는 FE-SEM을 이용하여 성장 형태 및 표면 특성을 확인하였으며, 미세구조는 HR-TEM을 이용하여 확인하였다.

  • PDF

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

IR Transmittance and Surface Structure of Diamond Film Polished by Thermomechanical Method (열기계적으로 연마한 다이아몬드 막의 적외선 투과도 및 표면구조)

  • 정상기;최시경;정대영;최한메;권순용
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.697-702
    • /
    • 1995
  • The rough growth surfaces of diamond films fabricated by the hot filament CVD were polished using thermomechanical polishing method. And then, its application to the optical windows was discussed through the measurement of transmittance in the range of infrared radiation and analysis of surfaces structure. The results were compaerd with those of the films polished with conventional mechanicla polishing. The transmittance of the mechanically polished film reached 57~66% over the whole range from 500 to 4000 cm-1. But the transmittance of the film polished with thermomechanical polishing method was reduced below 35%. This decrease in transmittance was due to both the graphitization of diamond on the polished surface and the growth of $\beta$-SiC at diamond/Si interface during polishing. The residual Fe in hte thermomechanically polished surface was confirmed by SIMS analysis. This Fe played the role of the graphitization of near surface region of the diamond film.

  • PDF