• Title/Summary/Keyword: Hot-Fire Injector Test

Search Result 13, Processing Time 0.022 seconds

Study on Spray Angle of a Throttleable Pintle Injector according to Total Momentum Ratio based on Hot Fire Test Conditions (연소시험 조건 기반 총운동량비에 따른 가변추력 핀틀 분사기의 분무각 분석)

  • Heo, Subeom;Kim, Dae Hwan;Lee, Suji;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.126-131
    • /
    • 2020
  • Throttleable rocket engines are in high demand due to the diversification of space missions. Pintle injector is known to be suitable for throttleable rocket engines, because of its high efficiency in overall thrust zone. In this study, the relationship between spray angle of a throttleable pintle injector and total momentum ratio based on hot fire test conditions was investigated. As a result, the spray angle in 100% and 60% throttling level is higher than the spray angle obtained by the case which considers only propellant mass flow rate, owing to higher total momentum ratio (TMR). The results of this study may be useful for predicting spray angle in hot fire test.

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

Performance and Ignition Characteristics of a Coaxial Swirl Injector using LOX-$GCH_4$ Propellant (액체산소/기체메탄 추진제를 사용하는 동축형 스월 인젝터의 성능 및 점화특성)

  • Kim, Do-Hun;Lee, In-Chul;Kim, Jin-Kon;Koo, Ja-Ye;Park, Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.72-76
    • /
    • 2010
  • To research and develop a high performance injector for LRE, it needs not only cold flow test, but also investigations of combustion performance, optimization of cyclogram and thermo-fluid dynamical characteristics of combustion flow field through hot-fire test. In this study, hot-fire test of LOX-CH4 coaxial swirl injector has been carried out using lab-scale hot fire test stand which can supply and control cryogenic propellant. Ignition and continuous combustion for LOX-$GCH_4$ propellant of 0.19 kg/s total mass flowrate and 2.80 O/F Ratio was achieved through cyclogram optimization. The mean combustion chamber pressure and thrust were measured as approximately 1.43 MPa and 38.7 kgf respectively.

  • PDF

Hot- Fire Injector Test for Determination of Combustion Stability Boundaries Using Model Chamber

  • Sohn Chae Hoon;Seol Woo-Seok;Shibanov Alexander A.;Pikalov Valery P.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1821-1832
    • /
    • 2005
  • This study realizes the conceptual method to predict combustion instability in actual full-scale combustion chamber of rocket engines by experimental tests with model (sub-scale) chamber. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions, and hot-fire test procedures were followed to obtain stability boundaries. From the experimental tests, two instability regions are presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for combustor designers. It is found that instability characteristics in the chamber with the adopted jet injectors can be explained by the correlation between the characteristic burning or mixing time and the characteristic acoustic time: In each instability region, dynamic behaviors of flames are investigated to verify the hydrodynamically-derived characteristic lengths of the jet injectors. Large-amplitude pressure oscillation observed in upper instability region is found to be generated by lifted-off flames.

An Experimental Study on the Characteristics of Spray Pattern and the Mixing Performance of Unlike-impinging Split Triplet Injector(F-O-O-F) (F-O-O-F 충돌형 injector의 분무특성 및 혼합성능에 관한 실험적 연구)

  • Lee, K.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1999
  • Mixing efficiency of the unlike Impinging split triplet injector(FOOF type) were measured to investigate the effect of the momentum ratio variation. $H_2$O/kerosene were used as a propellant simulant. The maximum mixing efficiency occured at the momentum ratio 1.5 (total mixture ratio 1.89). Calculated mixing efficiency of real propellant LOX/Kerosene showed similar trend but maximum efficiency of characteristic velocity occurs at the momentum ratio 2.0(total mixture ratio 2.17). Although there exist a little discrepancy between calculated mixing efficiency based on simulant cold test and hot fire test results, this calculated mixing efficiency can be used to predict hot fire mixing efficiency.

  • PDF

Experimental Study on Regenerative Cooling Characteristics for Uni-element Injector Face during prolonged Combustion Time (장시간 연소에 따른 단일 인젝터 분사기면 냉각 특성연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Lee, Seok-Jin;Chung, Hae-Seung;Kim, Young-Wook;Ko, Young-Sung;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.399-402
    • /
    • 2006
  • The purpose of this study is to propose a method for protecting injector face for prolonged combustion time and heat flux measurement technique at the injector face. To obtain basic design data and verify the performance of the proposed method, a regenerative cooling injector face was designed and manufactured for the hot firing test. Due to the safety reason, hot fire test were performed 3, 10, 30, 60 and 120 seconds time step. The discrepancy between analytical results adapting to combustion and nozzle and experimental results is believed due to the over estimation of the convection heat transfer calculation. for the injector face, flow velocity is almost negligible, therefore radiation is more important than convection. Consecutive hot firing test during 10, 30, 60 and 120 seconds combustion time shows good repeatability.

  • PDF

On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Valery P. Pikalov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1010-1018
    • /
    • 2004
  • This study presents the methodological aspects of combustion instability modeling and provides the numerical results of the model (sub-scale) combustion chamber, regarding geometrical dimensions and operating conditions, which are for determining the combustion stability boundaries using the model chamber. An approach to determine the stability limits and acoustic characteristics of injectors is described intensively. Procedures for extrapolation of the model operating parameters to the actual conditions are presented, which allow the hot-fire test data to be presented by parameters of the combustion chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for designers. Tests with the model chamber, based on the suggested scaling method, are far more cost-effective than with the actual (full-scale) chamber and useful for injector screening at the initial stage of the combustor development in a viewpoint of combustion instabilities.

Combustion Stability Characteristics of the Model Chamber with Various Configurations of Triplet Impinging-Jet Injectors

  • Sohn Chae-Hoon;Seol Woo-Seok;Shibanov Alexander A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.874-881
    • /
    • 2006
  • Combustion stability characteristics in actual full-scale combustion chamber of a rocket engine are investigated by experimental tests with the model (sub-scale) chamber. The present hot-fire tests adopt the combustion chamber with three configurations of triplet impinging-jet injectors such as F-O-O-F, F-O-F, and O-F-O configurations. Combustion stability bound-aries are obtained and presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio. From the experimental tests, two instability regions are observed and the pressure oscillations have the similar patterns irrespective of injector configuration. But, the O-F-O injector configuration shows broader upper-instability region than the other configurations. To verify the instability mechanism for the lower and upper instability regions, air-purge acoustic test is conducted and the photograph or the flames is taken. As a result, it is found that the pressure oscillations in the two regions can be characterized by the first impinging point of hydraulic jets and pre-blowout combustion, respectively.

Study on the Stability Test of Impinging(FOOF) Injector on $GN_2$ Purge Cold Flow Test (질소분사 음향시험을 통한 충돌형(FOOF) 분사기의 안정성 평가에 관한 연구)

  • Yoo Doc-Koon;Lee Kwang-Jin;Seo Seong-Hyeon;Han Young-Min;Choi Hwan-Seok;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.135-140
    • /
    • 2006
  • In the experimental study of $N_2$ purge cold flow test of impinging(FOOF) injector for determining of instability region, the whistling sound which has a specific frequency is generated. The frequency of whistling is proportional to the gas flow velocity in part of the oxidizer orifice and due to the coupling of the vibrating gas column and the natural frequency of pipe-orifice shape, the discontinuous jumping phenomena arises. The whistling phenomena have no effect on the combustion instability. Compared the damping factor of 1T1L mode with the hot fire test, the instability region of $N_2$ purge cold flow test is very much like that. It means that flow instability by impinging or mixing of jet is the main reason of combustion instability of impinging injector(FOOF) in the hot firing test.

  • PDF

Development of Sub-scale Combustor for a Liquid Rocket Engine Using Swirl Injector with External Mixing (외부혼합 와류분사기를 장착한 액체로켓엔진용 축소형 연소기 개발)

  • Han, Yeoung-Min;Kim, Seung-Han;Seo, Seong-Hyeon;Lee, Kwang-Jin;Kim, Jong-Gyu;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.102-111
    • /
    • 2004
  • The procedure of design and manufacture of sub-scale combustor using bipropellant swirl injector with external mixing for a liquid rocket engine are described. The results of cold flow test, ignition test and combustion test of the sub-scale combustor are also given in this paper. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has a injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors. The cold flow, ignition and combustion tests were successfully performed without damage of combustor. Results of hot firing tests show that combustion efficiency meets the target of design and operations of start and stop cyclogram are stable and high frequency combustion instability does not occur.