Objectives Recently the fuzzy logic is widely used in the decision making, identification, pattern recognition, optimization in various fields. In this study, we propose the fuzzy logic as the objective method of distinguishing hot and cold, the basis of diagnosis in Korean medicine. Methods We developed fuzzy inference system to distinguish whether the subjects had hot or cold. The cold and hot questionnaire of Korean traditional university textbook, the pulse rate and the DITI value of face used in the system. These three kinds of information were defined as 'fuzzy sets,' and 54 fuzzy rules were established on the basis of clinical practitioners' knowledge. The fuzzy inference was performed by using the Mamdani's method. To evaluate the usefulness of the fuzzy inference system, 200 cases of data measured in the Woosuk university hospital of oriental medicine were used to compare the determining hot, normal, cold results obtained from the experts and from the proposed system. Results As a result, 100 cases of "cold", 54 cases of "normal", and 34 cases of "hot" were matched between the experts and the proposed system. This fuzzy system showed the conformity degree of 94%(${\kappa}=0.853$). Conclusions In this study, we could express the process of distinguishing hot-cold using the fuzzy logic for objectification and quantification of hot-cold identification. This is the first study that introduce a fuzzy logic for distinguish pattern identification. The degree of the heat characteristic of the patients inferred by this system could provide a more objective basis for diagnosing the hot-cold of patients.
This study intended to find out the most substantial items in cold and heat pattern identification(CHPI) questionnaire based on usual symptoms through CHPI diagnosis and evaluation by experts. 120 participants, faculties of OO university, filled out CHPI questionnaire based on usual symptoms by the way of self-reporting. Then 2 Korean Medicine doctors independently diagnosed them whether they belonged to cold pattern identification(PI) or heat PI, and scored the result of it. Pearson correlation of 2 experts was 0.649 in cold PI and 0.605 in heat PI. Agreement was 75.8%(Kappa value 0.516) in cold PI and 74.2%(Kappa value 0.465) in heat PI. Pearson correlation of 2 experts was 0.649 in cold PI and 0.605 in heat PI. Agreement between two experts was 75.8%(Kappa value 0.516) in cold PI and 74.2%(Kappa value 0.465) in heat PI. Items of high correlation with experts' evaluation followed next: "do not usually like the cold", "usually like the warm", "usually feel cold" in cold PI and "do not usually like the hot", "usually feel hot", "usually feel burning sensation in the body" in heat PI. We could infer from that facts that experts give weight on 'subjective feeling of cold or heat in participants body' and 'preference on sensation of cold and heat'. We also expect this study to be an epidemiological foundation to disclose correlation between usual CHPI and diseases.
Wear leveling techniques have been studied to prolong the lifetime of NAND flash memory. Most of studies have used Program/Erase(P/E) cycles as wear index for wear leveling. Unfortunately, P/E cycles could not predict the real lifetime of NAND flash blocks. Therefore, these algorithms have the limited performance from prolonging the lifetime when applied to the SSD. In order to apply the real lifetime, wear leveling algorithms, which use raw Bit Error Rate(rBER) as wear index, have been studied in recent years. In this paper, we propose CrEWL(Cold data identification using raw Bit error rate in Wear Leveling), which uses rBER as wear index to apply to the real lifetime. The proposed wear leveling reduces an overhead of garbage collections by using HBSQ(Hot Block Sequence Queue) which identifies hot data. In order to reduce overhead of wear leveling, CrEWL does not perform wear leveling until rBER of the some blocks reaches a threshold value. We evaluate CrEWL in comparison with the previous studies under the traces having the different Hot/Cold rate, and the experimental results show that our wear leveling technique can reduce the overhead up to 41% and prolong the lifetime up to 72% compared with previous wear leveling techniques.
Hard disks, which have long been used as secondary storage in computing systems, are increasingly being replaced by solid state drives (SSDs), due to their relatively fast data input / output speeds and small, light weight. SSDs that use NAND flash memory as a storage medium are significantly different from hard disks in terms of physical operation and internal operation. In particular, there is a feature that data overwrite can not be performed, which causes erase operation before writing. In order to solve this problem, a hot data for frequently updating a data for a specific page is distinguished from a cold data for a relatively non-hot data. Hot data identification helps to improve overall performance by identifying and managing hot data separately. Among the various hot data identification methods known so far, there is a technique of recording consecutive write requests by using a Bloom filter and judging the values by hot data. However, the Bloom filter technique has a problem that a new bit array must be generated every time a set of items is changed. In addition, since it is judged based on a continuous write request, it is possible to make a wrong judgment. In this paper, we propose a method using a counting filter for accurate hot data verification. The proposed method examines consecutive write requests. It also records the number of times consecutive write requests occur. The proposed method enables more accurate hot data verification.
한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
/
pp.1273-1274
/
2006
Chemically pure, hydride/dehydride titanium powders were cold pre-compacted then extruded at $850^{\circ}C$ and $\sim450MPa$ under argon. The extrusions were 100% dense with a narrow band of surface porosity and equiaxed microstructure of similar magnitude to the starting material. The tensile properties of the bars were better than conventionally extruded CP titanium bar product. Outcomes from this study have assisted in the identification of a number of key characteristics important to the extrusion of titanium from pre-compacted CP titanium powders, allowing the elimination of canning and hot isostatic pressing (HIPping) of billets prior to extrusion as per conventional PM processes.
The pattern identification of exterior-interior syndrome and cold-heat syndrome is one of the diagnostic methods using most frequently in Oriental medicine. There was no systematic studies analyzing the characteristics of the 'exterior-interior and cold-heat' between healthy and disease group. In this study, cold-heat pattern, blood pressure, pulse rate, height and weight are recorded from 100 healthy subjects and 196 disease subjects with age ranging from 30 to 59 years. To analyze the differences between healthy and disease group, we used the descriptive statistics. And linear regression function, linear support vector machine and bayesian classifier were used for distinguishing healthy group from disease group. The score of both exterior-heat and interior-cold in healthy group is higher than the score in disease group. This means that if one belongs to the disease group, his(or her) exterior gets cold and his interior gets hot. And also, these result have no relevance to age. But, the attempt to classify healthy group from disease group with a exterior-interior and cold-heat and other vital signs did not have good performance. It mean that even though they have a different trend each other, only these kinds of information couldn't classify healthy group and disease group.
The purpose of this study is to investigate microbial contamination in water purifiers from two universities (A and B) in Chungcheong region and to evaluate about the harmfulness of the isolated bacteria to the human. The degree of microbiological contamination of six water purifiers at university A was investigated three times from July 2018 to September 2019, and nine water purifiers at university B were investigated in 2023. The isolated bacteria were biochemically identified using an API kit and Vitek-2 system, and then the bacteria were identified to the species level using MALDI-TOF MS. In addition, the possibility of human infection of the isolated bacteria was evaluated through a literature search. In July 2018 and September 2019, the number of bacteria isolated inside the faucet was below the acceptable standard for hot water, but exceed for cold water in all water purifiers. In January and September 2019, bacteria exceeding the acceptable standards were isolated nine times from the cold water of six water purifies (a total of 12 water purifiers). Bacteria identified by MALDI-TOF MS included anaerobic bacteria (Clostridium novyi, Clostridium themopalmarium etc.), Gram-positive bacilli (Microbacterium testaceum, Arthrobacter woluwensis etc.), and Gramnegative bacilli (Acinetobacter nosocomialis, Comamonas kerstersii etc.), which are difficult identify by biochemical methods. In conclusion, bacteria exceeding the acceptable standard were isolated from the cold water of most of the water purifiers. Most of the isolated bacteria were low-pathogenic bacteria from natural environment, but opportunistic bacteria that can cause infection in humans were also isolated from some water purifiers.
본 연구에서는 고온측과 저온측의 온도 예측을 위한 볼텍스 튜브 모델을 개발하였다. 볼텍스 튜브 모델은 시스템 식별 방법을 기반으로 개발하였으며, 개발된 볼텍스 튜브 모델은 ARX(Auto-Regressive with eXtra inputs)모델을 기반으로 하여 설계되었다. 본 연구에서 유도된 다항식 모델은 모델의 정확성을 확인하기 위해 실험데이터와 검증하였다. 또한, 유도된 모델은 안정성 검사 통과를 보여준다. 저온측 스로틀 밸브 각도를 변경하였을 때, 적절히 온도 분리가 이루어지는 것을 확인하였으며, 동적응답을 확인하기 위해 저온측 스로틀 밸브 각도를 변경 시켰을 경우, 볼텍스 튜브 모델의 온도가 적절히 분리 되는 것을 확인할 수 있다. 결론적으로, 개발된 볼텍스 튜브 모델을 저온측 스로틀 밸브 각도에 따라 온도 분리 예측이 가능하다는 것을 확인할 수 있다.
In order to ensure the fact that eight principle pattern differentiation is used clinically as a basic guideline for Korean medicine practice, the definition, role and method of yin-yang pattern differentiation with its case report were explored at first. Yinyang Pattern Differentiation is a method of discriminating human tendencies or morbidity based on the yin and yang characteristics expressed in living bodies. And yin and yang are the two contrasting characteristics and aspects of the interaction when certain physical conditions that have a lasting effect on the human physiological metabolic function are correlated with the morbidity. Specific methods of yinyang pattern differentiation can be divided into several types of yin and yang indicators. First, time and space factors like day and night, hot and cold seasons, above and below, topographical districts. Second, colors and pulse and their/or relative clearness and muddiness, hardness and softness, moving and resting. Third, diagnose yin and yang patterns through distinguishing the true and false of a fever and cold in an emergency phase such as increase of brain pressure and shock state. Fourth, general characteristics of the propensity and constitution of a subject such as body type, speech, behavior, and physiological metabolism. And for clinical use, these were summarized again as a symptom indicators of physical signs and color, pulse, tongue and questionnaire indicators of propensity, body type, and space-time characteristics. Conclusively, it was confirmed that yinyang pattern differentiation has its own diagnostic significance which is distinct from exterior-interior, cold-heat and deficiency-excess pattern differentiation.
No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
Nuclear Engineering and Technology
/
제44권4호
/
pp.393-404
/
2012
After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.